Compare commits
72 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
a688bfe22f | ||
|
|
9bd12f6acb | ||
|
|
61581203c4 | ||
|
|
84668e671e | ||
|
|
5bde202866 | ||
|
|
9304d5256a | ||
|
|
364bc6e278 | ||
|
|
e83db704b7 | ||
|
|
acf90043eb | ||
|
|
0011e20653 | ||
|
|
41fb307858 | ||
|
|
6a78c44d2e | ||
|
|
be9c9858ac | ||
|
|
2fa8d85b4c | ||
|
|
310666fd44 | ||
|
|
6cafee153a | ||
|
|
32f60f34db | ||
|
|
158eae8d2a | ||
|
|
92cedabc81 | ||
|
|
b9428d9780 | ||
|
|
5876f0c4d5 | ||
|
|
94750a2749 | ||
|
|
cf4b240913 | ||
|
|
1424fbb1d5 | ||
|
|
97f4c0d3b7 | ||
|
|
806536fab6 | ||
|
|
df8cfe462b | ||
|
|
a5f1521d71 | ||
|
|
8de7b7adc0 | ||
|
|
cde1b15ef0 | ||
|
|
46e4c06ba6 | ||
|
|
b7673daf0f | ||
|
|
397ed8f193 | ||
|
|
d90b2fd300 | ||
|
|
d62136d9fa | ||
|
|
0f8933b908 | ||
|
|
0ec87974d1 | ||
|
|
c8446c32d1 | ||
|
|
f79a2eb097 | ||
|
|
dea1a3b5de | ||
|
|
97ce235ae4 | ||
|
|
d04757eb9c | ||
|
|
2d7901a978 | ||
|
|
3881ba9bed | ||
|
|
5ac9089ccb | ||
|
|
eb8b991818 | ||
|
|
2ce8fbb2cc | ||
|
|
038f0cd5d1 | ||
|
|
efea3f981d | ||
|
|
42ce9dd671 | ||
|
|
4fa6867056 | ||
|
|
54ea6efdd0 | ||
|
|
27ac32a901 | ||
|
|
829f53c123 | ||
|
|
43eae6127d | ||
|
|
a03212c8cc | ||
|
|
2613969a7c | ||
|
|
be1b2db867 | ||
|
|
8fbee8701b | ||
|
|
952d160870 | ||
|
|
91ae6becde | ||
|
|
e1f576e4fe | ||
|
|
a7556cabdc | ||
|
|
b2e8d16bb1 | ||
|
|
d95e762812 | ||
|
|
384f927fc3 | ||
|
|
1b7c09ae18 | ||
|
|
85cb4092d5 | ||
|
|
5016160ac3 | ||
|
|
4f007f3128 | ||
|
|
7746a1177c | ||
|
|
2bb2a2983f |
9
.github/workflows/rust.yml
vendored
9
.github/workflows/rust.yml
vendored
@@ -10,10 +10,15 @@ env:
|
||||
CARGO_TERM_COLOR: always
|
||||
|
||||
jobs:
|
||||
build-and-test:
|
||||
name: Build & Test
|
||||
build:
|
||||
name: Build
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
actions: write
|
||||
checks: write
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
|
||||
2742
Cargo.lock
generated
Normal file
2742
Cargo.lock
generated
Normal file
File diff suppressed because it is too large
Load Diff
27
Cargo.toml
27
Cargo.toml
@@ -1,15 +1,14 @@
|
||||
[package]
|
||||
name = "telemt"
|
||||
version = "1.0.0"
|
||||
edition = "2021"
|
||||
rust-version = "1.75"
|
||||
version = "1.2.0"
|
||||
edition = "2024"
|
||||
|
||||
[dependencies]
|
||||
# C
|
||||
libc = "0.2"
|
||||
|
||||
# Async runtime
|
||||
tokio = { version = "1.35", features = ["full", "tracing"] }
|
||||
tokio = { version = "1.42", features = ["full", "tracing"] }
|
||||
tokio-util = { version = "0.7", features = ["codec"] }
|
||||
|
||||
# Crypto
|
||||
@@ -20,41 +19,41 @@ sha2 = "0.10"
|
||||
sha1 = "0.10"
|
||||
md-5 = "0.10"
|
||||
hmac = "0.12"
|
||||
crc32fast = "1.3"
|
||||
crc32fast = "1.4"
|
||||
zeroize = { version = "1.8", features = ["derive"] }
|
||||
|
||||
# Network
|
||||
socket2 = { version = "0.5", features = ["all"] }
|
||||
rustls = "0.22"
|
||||
|
||||
# Serial
|
||||
# Serialization
|
||||
serde = { version = "1.0", features = ["derive"] }
|
||||
serde_json = "1.0"
|
||||
toml = "0.8"
|
||||
|
||||
# Utils
|
||||
bytes = "1.5"
|
||||
thiserror = "1.0"
|
||||
bytes = "1.9"
|
||||
thiserror = "2.0"
|
||||
tracing = "0.1"
|
||||
tracing-subscriber = { version = "0.3", features = ["env-filter"] }
|
||||
parking_lot = "0.12"
|
||||
dashmap = "5.5"
|
||||
lru = "0.12"
|
||||
rand = "0.8"
|
||||
rand = "0.9"
|
||||
chrono = { version = "0.4", features = ["serde"] }
|
||||
hex = "0.4"
|
||||
base64 = "0.21"
|
||||
base64 = "0.22"
|
||||
url = "2.5"
|
||||
regex = "1.10"
|
||||
once_cell = "1.19"
|
||||
regex = "1.11"
|
||||
crossbeam-queue = "0.3"
|
||||
|
||||
# HTTP
|
||||
reqwest = { version = "0.11", features = ["rustls-tls"], default-features = false }
|
||||
reqwest = { version = "0.12", features = ["rustls-tls"], default-features = false }
|
||||
|
||||
[dev-dependencies]
|
||||
tokio-test = "0.4"
|
||||
criterion = "0.5"
|
||||
proptest = "1.4"
|
||||
futures = "0.3"
|
||||
|
||||
[[bench]]
|
||||
name = "crypto_bench"
|
||||
|
||||
345
README.md
345
README.md
@@ -2,16 +2,49 @@
|
||||
|
||||
**Telemt** is a fast, secure, and feature-rich server written in Rust: it fully implements the official Telegram proxy algo and adds many production-ready improvements such as connection pooling, replay protection, detailed statistics, masking from "prying" eyes
|
||||
|
||||
## Emergency
|
||||
**Важное сообщение для пользователей из России**
|
||||
|
||||
Мы работаем над проектом с Нового года и сейчас готовим новый релиз - 1.2
|
||||
|
||||
В нём имплементируется поддержка Middle Proxy Protocol - основного терминатора для Ad Tag:
|
||||
работа над ним идёт с 6 ферваля, а уже 10 февраля произошли "громкие события"...
|
||||
|
||||
Если у вас есть компетенции в асинхронных сетевых приложениях - мы открыты к предложениям и pull requests
|
||||
|
||||
**Important message for users from Russia**
|
||||
|
||||
We've been working on the project since December 30 and are currently preparing a new release – 1.2
|
||||
|
||||
It implements support for the Middle Proxy Protocol – the primary point for the Ad Tag:
|
||||
development on it started on February 6th, and by February 10th, "big activity" in Russia had already "taken place"...
|
||||
|
||||
If you have expertise in asynchronous network applications – we are open to ideas and pull requests!
|
||||
|
||||
# Features
|
||||
💥 The configuration structure has changed since version 1.1.0.0, change it in your environment!
|
||||
|
||||
⚓ Our implementation of **TLS-fronting** is one of the most deeply debugged, focused, advanced and *almost* **"behaviorally consistent to real"**: we are confident we have it right - [see evidence on our validation and traces](#recognizability-for-dpi-and-crawler)
|
||||
|
||||
# GOTO
|
||||
- [Features](#features)
|
||||
- [Quick Start Guide](#quick-start-guide)
|
||||
- [Build](#build)
|
||||
- [How to use?](#how-to-use)
|
||||
- [Systemd Method](#telemt-via-systemd)
|
||||
- [Configuration](#configuration)
|
||||
- [Minimal Configuration](#minimal-configuration-for-first-start)
|
||||
- [Advanced](#advanced)
|
||||
- [Adtag](#adtag)
|
||||
- [Listening and Announce IPs](#listening-and-announce-ips)
|
||||
- [Upstream Manager](#upstream-manager)
|
||||
- [IP](#bind-on-ip)
|
||||
- [SOCKS](#socks45-as-upstream)
|
||||
- [FAQ](#faq)
|
||||
- [Recognizability for DPI + crawler](#recognizability-for-dpi-and-crawler)
|
||||
- [Telegram Calls](#telegram-calls-via-mtproxy)
|
||||
- [DPI](#how-does-dpi-see-mtproxy-tls)
|
||||
- [Whitelist on Network Level](#whitelist-on-ip)
|
||||
- [Build](#build)
|
||||
- [Why Rust?](#why-rust)
|
||||
|
||||
## Features
|
||||
@@ -27,25 +60,27 @@
|
||||
- Extensive logging via `trace` and `debug` with `RUST_LOG` method
|
||||
|
||||
## Quick Start Guide
|
||||
|
||||
### Build
|
||||
**This software is designed for Debian-based OS: in addition to Debian, these are Ubuntu, Mint, Kali, MX and many other Linux**
|
||||
1. Download release
|
||||
```bash
|
||||
# Cloning repo
|
||||
git clone https://github.com/telemt/telemt
|
||||
# Changing Directory to telemt
|
||||
cd telemt
|
||||
# Starting Release Build
|
||||
cargo build --release
|
||||
# Move to /bin
|
||||
mv ./target/release/telemt /bin
|
||||
# Make executable
|
||||
chmod +x /bin/telemt
|
||||
# Lets go!
|
||||
telemt config.toml
|
||||
wget https://github.com/telemt/telemt/releases/latest/download/telemt
|
||||
```
|
||||
2. Move to Bin Folder
|
||||
```bash
|
||||
mv telemt /bin
|
||||
```
|
||||
4. Make Executable
|
||||
```bash
|
||||
chmod +x /bin/telemt
|
||||
```
|
||||
5. Go to [How to use?](#how-to-use) section for for further steps
|
||||
|
||||
## How to use?
|
||||
### Telemt via Systemd
|
||||
**This instruction "assume" that you:**
|
||||
- logged in as root or executed `su -` / `sudo su`
|
||||
- you already have an assembled and executable `telemt` in /bin folder as a result of the [Quick Start Guide](#quick-start-guide) or [Build](#build)
|
||||
|
||||
**0. Check port and generate secrets**
|
||||
|
||||
The port you have selected for use should be MISSING from the list, when:
|
||||
@@ -57,6 +92,14 @@ Generate 16 bytes/32 characters HEX with OpenSSL or another way:
|
||||
```bash
|
||||
openssl rand -hex 16
|
||||
```
|
||||
OR
|
||||
```bash
|
||||
xxd -l 16 -p /dev/urandom
|
||||
```
|
||||
OR
|
||||
```bash
|
||||
python3 -c 'import os; print(os.urandom(16).hex())'
|
||||
```
|
||||
|
||||
**1. Place your config to /etc/telemt.toml**
|
||||
|
||||
@@ -64,28 +107,8 @@ Open nano
|
||||
```bash
|
||||
nano /etc/telemt.toml
|
||||
```
|
||||
```bash
|
||||
port = 443 # Listening port
|
||||
paste your config from [Configuration](#configuration) section
|
||||
|
||||
[users]
|
||||
hello = "00000000000000000000000000000000" # Replace the secret with one generated before
|
||||
|
||||
[modes]
|
||||
classic = false # Plain obfuscated mode
|
||||
secure = false # dd-prefix mode
|
||||
tls = true # Fake TLS - ee-prefix
|
||||
|
||||
tls_domain = "petrovich.ru" # Domain for ee-secret and masking
|
||||
mask = true # Enable masking of bad traffic
|
||||
mask_host = "petrovich.ru" # Optional override for mask destination
|
||||
mask_port = 443 # Port for masking
|
||||
|
||||
prefer_ipv6 = false # Try IPv6 DCs first if true
|
||||
fast_mode = true # Use "fast" obfuscation variant
|
||||
|
||||
client_keepalive = 600 # Seconds
|
||||
client_ack_timeout = 300 # Seconds
|
||||
```
|
||||
then Ctrl+X -> Y -> Enter to save
|
||||
|
||||
**2. Create service on /etc/systemd/system/telemt.service**
|
||||
@@ -117,9 +140,224 @@ then Ctrl+X -> Y -> Enter to save
|
||||
|
||||
**5.** In Shell type `systemctl enable telemt` - then telemt will start with system startup, after the network is up
|
||||
|
||||
## Configuration
|
||||
### Minimal Configuration for First Start
|
||||
```toml
|
||||
# === UI ===
|
||||
# Users to show in the startup log (tg:// links)
|
||||
show_link = ["hello"]
|
||||
|
||||
# === General Settings ===
|
||||
[general]
|
||||
prefer_ipv6 = false
|
||||
fast_mode = true
|
||||
use_middle_proxy = false
|
||||
# ad_tag = "..."
|
||||
|
||||
[general.modes]
|
||||
classic = false
|
||||
secure = false
|
||||
tls = true
|
||||
|
||||
# === Server Binding ===
|
||||
[server]
|
||||
port = 443
|
||||
listen_addr_ipv4 = "0.0.0.0"
|
||||
listen_addr_ipv6 = "::"
|
||||
# metrics_port = 9090
|
||||
# metrics_whitelist = ["127.0.0.1", "::1"]
|
||||
|
||||
# Listen on multiple interfaces/IPs (overrides listen_addr_*)
|
||||
[[server.listeners]]
|
||||
ip = "0.0.0.0"
|
||||
# announce_ip = "1.2.3.4" # Optional: Public IP for tg:// links
|
||||
|
||||
[[server.listeners]]
|
||||
ip = "::"
|
||||
|
||||
# === Timeouts (in seconds) ===
|
||||
[timeouts]
|
||||
client_handshake = 15
|
||||
tg_connect = 10
|
||||
client_keepalive = 60
|
||||
client_ack = 300
|
||||
|
||||
# === Anti-Censorship & Masking ===
|
||||
[censorship]
|
||||
tls_domain = "petrovich.ru"
|
||||
mask = true
|
||||
mask_port = 443
|
||||
# mask_host = "petrovich.ru" # Defaults to tls_domain if not set
|
||||
fake_cert_len = 2048
|
||||
|
||||
# === Access Control & Users ===
|
||||
# username "hello" is used for example
|
||||
[access]
|
||||
replay_check_len = 65536
|
||||
ignore_time_skew = false
|
||||
|
||||
[access.users]
|
||||
# format: "username" = "32_hex_chars_secret"
|
||||
hello = "00000000000000000000000000000000"
|
||||
|
||||
# [access.user_max_tcp_conns]
|
||||
# hello = 50
|
||||
|
||||
# [access.user_data_quota]
|
||||
# hello = 1073741824 # 1 GB
|
||||
|
||||
# === Upstreams & Routing ===
|
||||
# By default, direct connection is used, but you can add SOCKS proxy
|
||||
|
||||
# Direct - Default
|
||||
[[upstreams]]
|
||||
type = "direct"
|
||||
enabled = true
|
||||
weight = 10
|
||||
|
||||
# SOCKS5
|
||||
# [[upstreams]]
|
||||
# type = "socks5"
|
||||
# address = "127.0.0.1:9050"
|
||||
# enabled = false
|
||||
# weight = 1
|
||||
```
|
||||
### Advanced
|
||||
#### Adtag
|
||||
To use channel advertising and usage statistics from Telegram, get Adtag from [@mtproxybot](https://t.me/mtproxybot), add this parameter to section `[General]`
|
||||
```toml
|
||||
ad_tag = "00000000000000000000000000000000" # Replace zeros to your adtag from @mtproxybot
|
||||
```
|
||||
#### Listening and Announce IPs
|
||||
To specify listening address and/or address in links, add to section `[[server.listeners]]` of config.toml:
|
||||
```toml
|
||||
[[server.listeners]]
|
||||
ip = "0.0.0.0" # 0.0.0.0 = all IPs; your IP = specific listening
|
||||
announce_ip = "1.2.3.4" # IP in links; comment with # if not used
|
||||
```
|
||||
#### Upstream Manager
|
||||
To specify upstream, add to section `[[upstreams]]` of config.toml:
|
||||
##### Bind on IP
|
||||
```toml
|
||||
[[upstreams]]
|
||||
type = "direct"
|
||||
weight = 1
|
||||
enabled = true
|
||||
interface = "192.168.1.100" # Change to your outgoing IP
|
||||
```
|
||||
##### SOCKS4/5 as Upstream
|
||||
- Without Auth:
|
||||
```toml
|
||||
[[upstreams]]
|
||||
type = "socks5" # Specify SOCKS4 or SOCKS5
|
||||
address = "1.2.3.4:1234" # SOCKS-server Address
|
||||
weight = 1 # Set Weight for Scenarios
|
||||
enabled = true
|
||||
```
|
||||
|
||||
- With Auth:
|
||||
```toml
|
||||
[[upstreams]]
|
||||
type = "socks5" # Specify SOCKS4 or SOCKS5
|
||||
address = "1.2.3.4:1234" # SOCKS-server Address
|
||||
username = "user" # Username for Auth on SOCKS-server
|
||||
password = "pass" # Password for Auth on SOCKS-server
|
||||
weight = 1 # Set Weight for Scenarios
|
||||
enabled = true
|
||||
```
|
||||
|
||||
## FAQ
|
||||
### Recognizability for DPI and crawler
|
||||
Since version 1.1.0.0, we have debugged masking perfectly: for all clients without "presenting" a key,
|
||||
we transparently direct traffic to the target host!
|
||||
|
||||
- We consider this a breakthrough aspect, which has no stable analogues today
|
||||
- Based on this: if `telemt` configured correctly, **TLS mode is completely identical to real-life handshake + communication** with a specified host
|
||||
- Here is our evidence:
|
||||
- 212.220.88.77 - "dummy" host, running `telemt`
|
||||
- `petrovich.ru` - `tls` + `masking` host, in HEX: `706574726f766963682e7275`
|
||||
- **No MITM + No Fake Certificates/Crypto** = pure transparent *TCP Splice* to "best" upstream: MTProxy or tls/mask-host:
|
||||
- DPI see legitimate HTTPS to `tls_host`, including *valid chain-of-trust* and entropy
|
||||
- Crawlers completely satisfied receiving responses from `mask_host`
|
||||
#### Client WITH secret-key accesses the MTProxy resource:
|
||||
|
||||
<img width="360" height="439" alt="telemt" src="https://github.com/user-attachments/assets/39352afb-4a11-4ecc-9d91-9e8cfb20607d" />
|
||||
|
||||
#### Client WITHOUT secret-key gets transparent access to the specified resource:
|
||||
- with trusted certificate
|
||||
- with original handshake
|
||||
- with full request-response way
|
||||
- with low-latency overhead
|
||||
```bash
|
||||
root@debian:~/telemt# curl -v -I --resolve petrovich.ru:443:212.220.88.77 https://petrovich.ru/
|
||||
* Added petrovich.ru:443:212.220.88.77 to DNS cache
|
||||
* Hostname petrovich.ru was found in DNS cache
|
||||
* Trying 212.220.88.77:443...
|
||||
* Connected to petrovich.ru (212.220.88.77) port 443 (#0)
|
||||
* ALPN: offers h2,http/1.1
|
||||
* TLSv1.3 (OUT), TLS handshake, Client hello (1):
|
||||
* CAfile: /etc/ssl/certs/ca-certificates.crt
|
||||
* CApath: /etc/ssl/certs
|
||||
* TLSv1.3 (IN), TLS handshake, Server hello (2):
|
||||
* TLSv1.3 (IN), TLS handshake, Encrypted Extensions (8):
|
||||
* TLSv1.3 (IN), TLS handshake, Certificate (11):
|
||||
* TLSv1.3 (IN), TLS handshake, CERT verify (15):
|
||||
* TLSv1.3 (IN), TLS handshake, Finished (20):
|
||||
* TLSv1.3 (OUT), TLS change cipher, Change cipher spec (1):
|
||||
* TLSv1.3 (OUT), TLS handshake, Finished (20):
|
||||
* SSL connection using TLSv1.3 / TLS_AES_256_GCM_SHA384
|
||||
* ALPN: server did not agree on a protocol. Uses default.
|
||||
* Server certificate:
|
||||
* subject: C=RU; ST=Saint Petersburg; L=Saint Petersburg; O=STD Petrovich; CN=*.petrovich.ru
|
||||
* start date: Jan 28 11:21:01 2025 GMT
|
||||
* expire date: Mar 1 11:21:00 2026 GMT
|
||||
* subjectAltName: host "petrovich.ru" matched cert's "petrovich.ru"
|
||||
* issuer: C=BE; O=GlobalSign nv-sa; CN=GlobalSign RSA OV SSL CA 2018
|
||||
* SSL certificate verify ok.
|
||||
* using HTTP/1.x
|
||||
> HEAD / HTTP/1.1
|
||||
> Host: petrovich.ru
|
||||
> User-Agent: curl/7.88.1
|
||||
> Accept: */*
|
||||
>
|
||||
* TLSv1.3 (IN), TLS handshake, Newsession Ticket (4):
|
||||
* TLSv1.3 (IN), TLS handshake, Newsession Ticket (4):
|
||||
* old SSL session ID is stale, removing
|
||||
< HTTP/1.1 200 OK
|
||||
HTTP/1.1 200 OK
|
||||
< Server: Variti/0.9.3a
|
||||
Server: Variti/0.9.3a
|
||||
< Date: Thu, 01 Jan 2026 00:0000 GMT
|
||||
Date: Thu, 01 Jan 2026 00:0000 GMT
|
||||
< Access-Control-Allow-Origin: *
|
||||
Access-Control-Allow-Origin: *
|
||||
< Content-Type: text/html
|
||||
Content-Type: text/html
|
||||
< Cache-Control: no-store
|
||||
Cache-Control: no-store
|
||||
< Expires: Thu, 01 Jan 2026 00:0000 GMT
|
||||
Expires: Thu, 01 Jan 2026 00:0000 GMT
|
||||
< Pragma: no-cache
|
||||
Pragma: no-cache
|
||||
< Set-Cookie: ipp_uid=XXXXX/XXXXX/XXXXX==; Expires=Tue, 31 Dec 2040 23:59:59 GMT; Domain=.petrovich.ru; Path=/
|
||||
Set-Cookie: ipp_uid=XXXXX/XXXXX/XXXXX==; Expires=Tue, 31 Dec 2040 23:59:59 GMT; Domain=.petrovich.ru; Path=/
|
||||
< Content-Type: text/html
|
||||
Content-Type: text/html
|
||||
< Content-Length: 31253
|
||||
Content-Length: 31253
|
||||
< Connection: keep-alive
|
||||
Connection: keep-alive
|
||||
< Keep-Alive: timeout=60
|
||||
Keep-Alive: timeout=60
|
||||
|
||||
<
|
||||
* Connection #0 to host petrovich.ru left intact
|
||||
|
||||
```
|
||||
- We challenged ourselves, we kept trying and we didn't only *beat the air*: now, we have something to show you
|
||||
- Do not just take our word for it? - This is great and we respect that: you can build your own `telemt` or download a build and check it right now
|
||||
### Telegram Calls via MTProxy
|
||||
- Telegram architecture does **NOT allow calls via MTProxy**, but only via SOCKS5, which cannot be obfuscated
|
||||
- Telegram architecture **does NOT allow calls via MTProxy**, but only via SOCKS5, which cannot be obfuscated
|
||||
### How does DPI see MTProxy TLS?
|
||||
- DPI sees MTProxy in Fake TLS (ee) mode as TLS 1.3
|
||||
- the SNI you specify sends both the client and the server;
|
||||
@@ -127,11 +365,34 @@ then Ctrl+X -> Y -> Enter to save
|
||||
- high entropy, which is normal for AES-encrypted traffic;
|
||||
### Whitelist on IP
|
||||
- MTProxy cannot work when there is:
|
||||
- no IP connectivity to the target host
|
||||
- no IP connectivity to the target host: Russian Whitelist on Mobile Networks - "Белый список"
|
||||
- OR all TCP traffic is blocked
|
||||
- OR all TLS traffic is blocked,
|
||||
- OR high entropy/encrypted traffic is blocked: content filters at universities and critical infrastructure
|
||||
- OR all TLS traffic is blocked
|
||||
- OR specified port is blocked: use 443 to make it "like real"
|
||||
- OR provided SNI is blocked: use "officially approved"/innocuous name
|
||||
- like most protocols on the Internet;
|
||||
- this situation is observed in China behind the Great Chinese Firewall and in Russia on mobile networks
|
||||
- these situations are observed:
|
||||
- in China behind the Great Firewall
|
||||
- in Russia on mobile networks, less in wired networks
|
||||
- in Iran during "activity"
|
||||
|
||||
|
||||
## Build
|
||||
```bash
|
||||
# Cloning repo
|
||||
git clone https://github.com/telemt/telemt
|
||||
# Changing Directory to telemt
|
||||
cd telemt
|
||||
# Starting Release Build
|
||||
cargo build --release
|
||||
# Move to /bin
|
||||
mv ./target/release/telemt /bin
|
||||
# Make executable
|
||||
chmod +x /bin/telemt
|
||||
# Lets go!
|
||||
telemt config.toml
|
||||
```
|
||||
|
||||
## Why Rust?
|
||||
- Long-running reliability and idempotent behavior
|
||||
@@ -140,6 +401,10 @@ then Ctrl+X -> Y -> Enter to save
|
||||
- Memory safety and reduced attack surface
|
||||
- Tokio's asynchronous architecture
|
||||
|
||||
## Issues
|
||||
- ✅ [SOCKS5 as Upstream](https://github.com/telemt/telemt/issues/1) -> added Upstream Management
|
||||
- ✅ [iOS - Media Upload Hanging-in-Loop](https://github.com/telemt/telemt/issues/2)
|
||||
|
||||
## Roadmap
|
||||
- Public IP in links
|
||||
- Config Reload-on-fly
|
||||
|
||||
84
config.toml
84
config.toml
@@ -1,13 +1,79 @@
|
||||
port = 443
|
||||
# === UI ===
|
||||
# Users to show in the startup log (tg:// links)
|
||||
show_link = ["hello"]
|
||||
|
||||
[users]
|
||||
user1 = "00000000000000000000000000000000"
|
||||
# === General Settings ===
|
||||
[general]
|
||||
prefer_ipv6 = false
|
||||
fast_mode = true
|
||||
use_middle_proxy = true
|
||||
ad_tag = "00000000000000000000000000000000"
|
||||
|
||||
[modes]
|
||||
classic = true
|
||||
secure = true
|
||||
# Log level: debug | verbose | normal | silent
|
||||
# Can be overridden with --silent or --log-level CLI flags
|
||||
# RUST_LOG env var takes absolute priority over all of these
|
||||
log_level = "normal"
|
||||
|
||||
[general.modes]
|
||||
classic = false
|
||||
secure = false
|
||||
tls = true
|
||||
|
||||
tls_domain = "www.github.com"
|
||||
fast_mode = true
|
||||
prefer_ipv6 = false
|
||||
# === Server Binding ===
|
||||
[server]
|
||||
port = 443
|
||||
listen_addr_ipv4 = "0.0.0.0"
|
||||
listen_addr_ipv6 = "::"
|
||||
# metrics_port = 9090
|
||||
# metrics_whitelist = ["127.0.0.1", "::1"]
|
||||
|
||||
# Listen on multiple interfaces/IPs (overrides listen_addr_*)
|
||||
[[server.listeners]]
|
||||
ip = "0.0.0.0"
|
||||
# announce_ip = "1.2.3.4" # Optional: Public IP for tg:// links
|
||||
|
||||
[[server.listeners]]
|
||||
ip = "::"
|
||||
|
||||
# === Timeouts (in seconds) ===
|
||||
[timeouts]
|
||||
client_handshake = 15
|
||||
tg_connect = 10
|
||||
client_keepalive = 60
|
||||
client_ack = 300
|
||||
|
||||
# === Anti-Censorship & Masking ===
|
||||
[censorship]
|
||||
tls_domain = "google.ru"
|
||||
mask = true
|
||||
mask_port = 443
|
||||
# mask_host = "petrovich.ru" # Defaults to tls_domain if not set
|
||||
fake_cert_len = 2048
|
||||
|
||||
# === Access Control & Users ===
|
||||
[access]
|
||||
replay_check_len = 65536
|
||||
replay_window_secs = 1800
|
||||
ignore_time_skew = false
|
||||
|
||||
[access.users]
|
||||
# format: "username" = "32_hex_chars_secret"
|
||||
hello = "00000000000000000000000000000000"
|
||||
|
||||
# [access.user_max_tcp_conns]
|
||||
# hello = 50
|
||||
|
||||
# [access.user_data_quota]
|
||||
# hello = 1073741824 # 1 GB
|
||||
|
||||
# === Upstreams & Routing ===
|
||||
[[upstreams]]
|
||||
type = "direct"
|
||||
enabled = true
|
||||
weight = 10
|
||||
|
||||
# [[upstreams]]
|
||||
# type = "socks5"
|
||||
# address = "127.0.0.1:9050"
|
||||
# enabled = false
|
||||
# weight = 1
|
||||
300
src/cli.rs
Normal file
300
src/cli.rs
Normal file
@@ -0,0 +1,300 @@
|
||||
//! CLI commands: --init (fire-and-forget setup)
|
||||
|
||||
use std::fs;
|
||||
use std::path::{Path, PathBuf};
|
||||
use std::process::Command;
|
||||
use rand::Rng;
|
||||
|
||||
/// Options for the init command
|
||||
pub struct InitOptions {
|
||||
pub port: u16,
|
||||
pub domain: String,
|
||||
pub secret: Option<String>,
|
||||
pub username: String,
|
||||
pub config_dir: PathBuf,
|
||||
pub no_start: bool,
|
||||
}
|
||||
|
||||
impl Default for InitOptions {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
port: 443,
|
||||
domain: "www.google.com".to_string(),
|
||||
secret: None,
|
||||
username: "user".to_string(),
|
||||
config_dir: PathBuf::from("/etc/telemt"),
|
||||
no_start: false,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Parse --init subcommand options from CLI args.
|
||||
///
|
||||
/// Returns `Some(InitOptions)` if `--init` was found, `None` otherwise.
|
||||
pub fn parse_init_args(args: &[String]) -> Option<InitOptions> {
|
||||
if !args.iter().any(|a| a == "--init") {
|
||||
return None;
|
||||
}
|
||||
|
||||
let mut opts = InitOptions::default();
|
||||
let mut i = 0;
|
||||
|
||||
while i < args.len() {
|
||||
match args[i].as_str() {
|
||||
"--port" => {
|
||||
i += 1;
|
||||
if i < args.len() {
|
||||
opts.port = args[i].parse().unwrap_or(443);
|
||||
}
|
||||
}
|
||||
"--domain" => {
|
||||
i += 1;
|
||||
if i < args.len() {
|
||||
opts.domain = args[i].clone();
|
||||
}
|
||||
}
|
||||
"--secret" => {
|
||||
i += 1;
|
||||
if i < args.len() {
|
||||
opts.secret = Some(args[i].clone());
|
||||
}
|
||||
}
|
||||
"--user" => {
|
||||
i += 1;
|
||||
if i < args.len() {
|
||||
opts.username = args[i].clone();
|
||||
}
|
||||
}
|
||||
"--config-dir" => {
|
||||
i += 1;
|
||||
if i < args.len() {
|
||||
opts.config_dir = PathBuf::from(&args[i]);
|
||||
}
|
||||
}
|
||||
"--no-start" => {
|
||||
opts.no_start = true;
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
i += 1;
|
||||
}
|
||||
|
||||
Some(opts)
|
||||
}
|
||||
|
||||
/// Run the fire-and-forget setup.
|
||||
pub fn run_init(opts: InitOptions) -> Result<(), Box<dyn std::error::Error>> {
|
||||
eprintln!("[telemt] Fire-and-forget setup");
|
||||
eprintln!();
|
||||
|
||||
// 1. Generate or validate secret
|
||||
let secret = match opts.secret {
|
||||
Some(s) => {
|
||||
if s.len() != 32 || !s.chars().all(|c| c.is_ascii_hexdigit()) {
|
||||
eprintln!("[error] Secret must be exactly 32 hex characters");
|
||||
std::process::exit(1);
|
||||
}
|
||||
s
|
||||
}
|
||||
None => generate_secret(),
|
||||
};
|
||||
|
||||
eprintln!("[+] Secret: {}", secret);
|
||||
eprintln!("[+] User: {}", opts.username);
|
||||
eprintln!("[+] Port: {}", opts.port);
|
||||
eprintln!("[+] Domain: {}", opts.domain);
|
||||
|
||||
// 2. Create config directory
|
||||
fs::create_dir_all(&opts.config_dir)?;
|
||||
let config_path = opts.config_dir.join("config.toml");
|
||||
|
||||
// 3. Write config
|
||||
let config_content = generate_config(&opts.username, &secret, opts.port, &opts.domain);
|
||||
fs::write(&config_path, &config_content)?;
|
||||
eprintln!("[+] Config written to {}", config_path.display());
|
||||
|
||||
// 4. Write systemd unit
|
||||
let exe_path = std::env::current_exe()
|
||||
.unwrap_or_else(|_| PathBuf::from("/usr/local/bin/telemt"));
|
||||
|
||||
let unit_path = Path::new("/etc/systemd/system/telemt.service");
|
||||
let unit_content = generate_systemd_unit(&exe_path, &config_path);
|
||||
|
||||
match fs::write(unit_path, &unit_content) {
|
||||
Ok(()) => {
|
||||
eprintln!("[+] Systemd unit written to {}", unit_path.display());
|
||||
}
|
||||
Err(e) => {
|
||||
eprintln!("[!] Cannot write systemd unit (run as root?): {}", e);
|
||||
eprintln!("[!] Manual unit file content:");
|
||||
eprintln!("{}", unit_content);
|
||||
|
||||
// Still print links and config
|
||||
print_links(&opts.username, &secret, opts.port, &opts.domain);
|
||||
return Ok(());
|
||||
}
|
||||
}
|
||||
|
||||
// 5. Reload systemd
|
||||
run_cmd("systemctl", &["daemon-reload"]);
|
||||
|
||||
// 6. Enable service
|
||||
run_cmd("systemctl", &["enable", "telemt.service"]);
|
||||
eprintln!("[+] Service enabled");
|
||||
|
||||
// 7. Start service (unless --no-start)
|
||||
if !opts.no_start {
|
||||
run_cmd("systemctl", &["start", "telemt.service"]);
|
||||
eprintln!("[+] Service started");
|
||||
|
||||
// Brief delay then check status
|
||||
std::thread::sleep(std::time::Duration::from_secs(1));
|
||||
let status = Command::new("systemctl")
|
||||
.args(["is-active", "telemt.service"])
|
||||
.output();
|
||||
|
||||
match status {
|
||||
Ok(out) if out.status.success() => {
|
||||
eprintln!("[+] Service is running");
|
||||
}
|
||||
_ => {
|
||||
eprintln!("[!] Service may not have started correctly");
|
||||
eprintln!("[!] Check: journalctl -u telemt.service -n 20");
|
||||
}
|
||||
}
|
||||
} else {
|
||||
eprintln!("[+] Service not started (--no-start)");
|
||||
eprintln!("[+] Start manually: systemctl start telemt.service");
|
||||
}
|
||||
|
||||
eprintln!();
|
||||
|
||||
// 8. Print links
|
||||
print_links(&opts.username, &secret, opts.port, &opts.domain);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn generate_secret() -> String {
|
||||
let mut rng = rand::rng();
|
||||
let bytes: Vec<u8> = (0..16).map(|_| rng.random::<u8>()).collect();
|
||||
hex::encode(bytes)
|
||||
}
|
||||
|
||||
fn generate_config(username: &str, secret: &str, port: u16, domain: &str) -> String {
|
||||
format!(
|
||||
r#"# Telemt MTProxy — auto-generated config
|
||||
# Re-run `telemt --init` to regenerate
|
||||
|
||||
show_link = ["{username}"]
|
||||
|
||||
[general]
|
||||
prefer_ipv6 = false
|
||||
fast_mode = true
|
||||
use_middle_proxy = false
|
||||
log_level = "normal"
|
||||
|
||||
[general.modes]
|
||||
classic = false
|
||||
secure = false
|
||||
tls = true
|
||||
|
||||
[server]
|
||||
port = {port}
|
||||
listen_addr_ipv4 = "0.0.0.0"
|
||||
listen_addr_ipv6 = "::"
|
||||
|
||||
[[server.listeners]]
|
||||
ip = "0.0.0.0"
|
||||
|
||||
[[server.listeners]]
|
||||
ip = "::"
|
||||
|
||||
[timeouts]
|
||||
client_handshake = 15
|
||||
tg_connect = 10
|
||||
client_keepalive = 60
|
||||
client_ack = 300
|
||||
|
||||
[censorship]
|
||||
tls_domain = "{domain}"
|
||||
mask = true
|
||||
mask_port = 443
|
||||
fake_cert_len = 2048
|
||||
|
||||
[access]
|
||||
replay_check_len = 65536
|
||||
replay_window_secs = 1800
|
||||
ignore_time_skew = false
|
||||
|
||||
[access.users]
|
||||
{username} = "{secret}"
|
||||
|
||||
[[upstreams]]
|
||||
type = "direct"
|
||||
enabled = true
|
||||
weight = 10
|
||||
"#,
|
||||
username = username,
|
||||
secret = secret,
|
||||
port = port,
|
||||
domain = domain,
|
||||
)
|
||||
}
|
||||
|
||||
fn generate_systemd_unit(exe_path: &Path, config_path: &Path) -> String {
|
||||
format!(
|
||||
r#"[Unit]
|
||||
Description=Telemt MTProxy
|
||||
Documentation=https://github.com/nicepkg/telemt
|
||||
After=network-online.target
|
||||
Wants=network-online.target
|
||||
|
||||
[Service]
|
||||
Type=simple
|
||||
ExecStart={exe} {config}
|
||||
Restart=always
|
||||
RestartSec=5
|
||||
LimitNOFILE=65535
|
||||
# Security hardening
|
||||
NoNewPrivileges=true
|
||||
ProtectSystem=strict
|
||||
ProtectHome=true
|
||||
ReadWritePaths=/etc/telemt
|
||||
PrivateTmp=true
|
||||
|
||||
[Install]
|
||||
WantedBy=multi-user.target
|
||||
"#,
|
||||
exe = exe_path.display(),
|
||||
config = config_path.display(),
|
||||
)
|
||||
}
|
||||
|
||||
fn run_cmd(cmd: &str, args: &[&str]) {
|
||||
match Command::new(cmd).args(args).output() {
|
||||
Ok(output) => {
|
||||
if !output.status.success() {
|
||||
let stderr = String::from_utf8_lossy(&output.stderr);
|
||||
eprintln!("[!] {} {} failed: {}", cmd, args.join(" "), stderr.trim());
|
||||
}
|
||||
}
|
||||
Err(e) => {
|
||||
eprintln!("[!] Failed to run {} {}: {}", cmd, args.join(" "), e);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn print_links(username: &str, secret: &str, port: u16, domain: &str) {
|
||||
let domain_hex = hex::encode(domain);
|
||||
|
||||
println!("=== Proxy Links ===");
|
||||
println!("[{}]", username);
|
||||
println!(" EE-TLS: tg://proxy?server=YOUR_SERVER_IP&port={}&secret=ee{}{}",
|
||||
port, secret, domain_hex);
|
||||
println!();
|
||||
println!("Replace YOUR_SERVER_IP with your server's public IP.");
|
||||
println!("The proxy will auto-detect and display the correct link on startup.");
|
||||
println!("Check: journalctl -u telemt.service | head -30");
|
||||
println!("===================");
|
||||
}
|
||||
@@ -1,12 +1,89 @@
|
||||
//! Configuration
|
||||
|
||||
use std::collections::HashMap;
|
||||
use std::net::IpAddr;
|
||||
use std::net::{IpAddr, SocketAddr};
|
||||
use std::path::Path;
|
||||
use chrono::{DateTime, Utc};
|
||||
use serde::{Deserialize, Serialize};
|
||||
use crate::error::{ProxyError, Result};
|
||||
|
||||
// ============= Helper Defaults =============
|
||||
|
||||
fn default_true() -> bool { true }
|
||||
fn default_port() -> u16 { 443 }
|
||||
fn default_tls_domain() -> String { "www.google.com".to_string() }
|
||||
fn default_mask_port() -> u16 { 443 }
|
||||
fn default_replay_check_len() -> usize { 65536 }
|
||||
fn default_replay_window_secs() -> u64 { 1800 }
|
||||
fn default_handshake_timeout() -> u64 { 15 }
|
||||
fn default_connect_timeout() -> u64 { 10 }
|
||||
fn default_keepalive() -> u64 { 60 }
|
||||
fn default_ack_timeout() -> u64 { 300 }
|
||||
fn default_listen_addr() -> String { "0.0.0.0".to_string() }
|
||||
fn default_fake_cert_len() -> usize { 2048 }
|
||||
fn default_weight() -> u16 { 1 }
|
||||
fn default_metrics_whitelist() -> Vec<IpAddr> {
|
||||
vec![
|
||||
"127.0.0.1".parse().unwrap(),
|
||||
"::1".parse().unwrap(),
|
||||
]
|
||||
}
|
||||
|
||||
// ============= Log Level =============
|
||||
|
||||
/// Logging verbosity level
|
||||
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Default)]
|
||||
#[serde(rename_all = "lowercase")]
|
||||
pub enum LogLevel {
|
||||
/// All messages including trace (trace + debug + info + warn + error)
|
||||
Debug,
|
||||
/// Detailed operational logs (debug + info + warn + error)
|
||||
Verbose,
|
||||
/// Standard operational logs (info + warn + error)
|
||||
#[default]
|
||||
Normal,
|
||||
/// Minimal output: only warnings and errors (warn + error).
|
||||
/// Startup messages (config, DC connectivity, proxy links) are always shown
|
||||
/// via info! before the filter is applied.
|
||||
Silent,
|
||||
}
|
||||
|
||||
impl LogLevel {
|
||||
/// Convert to tracing EnvFilter directive string
|
||||
pub fn to_filter_str(&self) -> &'static str {
|
||||
match self {
|
||||
LogLevel::Debug => "trace",
|
||||
LogLevel::Verbose => "debug",
|
||||
LogLevel::Normal => "info",
|
||||
LogLevel::Silent => "warn",
|
||||
}
|
||||
}
|
||||
|
||||
/// Parse from a loose string (CLI argument)
|
||||
pub fn from_str_loose(s: &str) -> Self {
|
||||
match s.to_lowercase().as_str() {
|
||||
"debug" | "trace" => LogLevel::Debug,
|
||||
"verbose" => LogLevel::Verbose,
|
||||
"normal" | "info" => LogLevel::Normal,
|
||||
"silent" | "quiet" | "error" | "warn" => LogLevel::Silent,
|
||||
_ => LogLevel::Normal,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl std::fmt::Display for LogLevel {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
match self {
|
||||
LogLevel::Debug => write!(f, "debug"),
|
||||
LogLevel::Verbose => write!(f, "verbose"),
|
||||
LogLevel::Normal => write!(f, "normal"),
|
||||
LogLevel::Silent => write!(f, "silent"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ============= Sub-Configs =============
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct ProxyModes {
|
||||
#[serde(default)]
|
||||
@@ -17,8 +94,6 @@ pub struct ProxyModes {
|
||||
pub tls: bool,
|
||||
}
|
||||
|
||||
fn default_true() -> bool { true }
|
||||
|
||||
impl Default for ProxyModes {
|
||||
fn default() -> Self {
|
||||
Self { classic: true, secure: true, tls: true }
|
||||
@@ -26,31 +101,10 @@ impl Default for ProxyModes {
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct ProxyConfig {
|
||||
#[serde(default = "default_port")]
|
||||
pub port: u16,
|
||||
|
||||
#[serde(default)]
|
||||
pub users: HashMap<String, String>,
|
||||
|
||||
#[serde(default)]
|
||||
pub ad_tag: Option<String>,
|
||||
|
||||
pub struct GeneralConfig {
|
||||
#[serde(default)]
|
||||
pub modes: ProxyModes,
|
||||
|
||||
#[serde(default = "default_tls_domain")]
|
||||
pub tls_domain: String,
|
||||
|
||||
#[serde(default = "default_true")]
|
||||
pub mask: bool,
|
||||
|
||||
#[serde(default)]
|
||||
pub mask_host: Option<String>,
|
||||
|
||||
#[serde(default = "default_mask_port")]
|
||||
pub mask_port: u16,
|
||||
|
||||
#[serde(default)]
|
||||
pub prefer_ipv6: bool,
|
||||
|
||||
@@ -61,31 +115,29 @@ pub struct ProxyConfig {
|
||||
pub use_middle_proxy: bool,
|
||||
|
||||
#[serde(default)]
|
||||
pub user_max_tcp_conns: HashMap<String, usize>,
|
||||
pub ad_tag: Option<String>,
|
||||
|
||||
#[serde(default)]
|
||||
pub user_expirations: HashMap<String, DateTime<Utc>>,
|
||||
pub log_level: LogLevel,
|
||||
}
|
||||
|
||||
#[serde(default)]
|
||||
pub user_data_quota: HashMap<String, u64>,
|
||||
impl Default for GeneralConfig {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
modes: ProxyModes::default(),
|
||||
prefer_ipv6: false,
|
||||
fast_mode: true,
|
||||
use_middle_proxy: false,
|
||||
ad_tag: None,
|
||||
log_level: LogLevel::Normal,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[serde(default = "default_replay_check_len")]
|
||||
pub replay_check_len: usize,
|
||||
|
||||
#[serde(default)]
|
||||
pub ignore_time_skew: bool,
|
||||
|
||||
#[serde(default = "default_handshake_timeout")]
|
||||
pub client_handshake_timeout: u64,
|
||||
|
||||
#[serde(default = "default_connect_timeout")]
|
||||
pub tg_connect_timeout: u64,
|
||||
|
||||
#[serde(default = "default_keepalive")]
|
||||
pub client_keepalive: u64,
|
||||
|
||||
#[serde(default = "default_ack_timeout")]
|
||||
pub client_ack_timeout: u64,
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct ServerConfig {
|
||||
#[serde(default = "default_port")]
|
||||
pub port: u16,
|
||||
|
||||
#[serde(default = "default_listen_addr")]
|
||||
pub listen_addr_ipv4: String,
|
||||
@@ -102,64 +154,205 @@ pub struct ProxyConfig {
|
||||
#[serde(default = "default_metrics_whitelist")]
|
||||
pub metrics_whitelist: Vec<IpAddr>,
|
||||
|
||||
#[serde(default = "default_fake_cert_len")]
|
||||
pub fake_cert_len: usize,
|
||||
#[serde(default)]
|
||||
pub listeners: Vec<ListenerConfig>,
|
||||
}
|
||||
|
||||
fn default_port() -> u16 { 443 }
|
||||
fn default_tls_domain() -> String { "www.google.com".to_string() }
|
||||
fn default_mask_port() -> u16 { 443 }
|
||||
fn default_replay_check_len() -> usize { 65536 }
|
||||
fn default_handshake_timeout() -> u64 { 10 }
|
||||
fn default_connect_timeout() -> u64 { 10 }
|
||||
fn default_keepalive() -> u64 { 600 }
|
||||
fn default_ack_timeout() -> u64 { 300 }
|
||||
fn default_listen_addr() -> String { "0.0.0.0".to_string() }
|
||||
fn default_fake_cert_len() -> usize { 2048 }
|
||||
|
||||
fn default_metrics_whitelist() -> Vec<IpAddr> {
|
||||
vec![
|
||||
"127.0.0.1".parse().unwrap(),
|
||||
"::1".parse().unwrap(),
|
||||
]
|
||||
}
|
||||
|
||||
impl Default for ProxyConfig {
|
||||
impl Default for ServerConfig {
|
||||
fn default() -> Self {
|
||||
let mut users = HashMap::new();
|
||||
users.insert("default".to_string(), "00000000000000000000000000000000".to_string());
|
||||
|
||||
Self {
|
||||
port: default_port(),
|
||||
users,
|
||||
ad_tag: None,
|
||||
modes: ProxyModes::default(),
|
||||
tls_domain: default_tls_domain(),
|
||||
mask: true,
|
||||
mask_host: None,
|
||||
mask_port: default_mask_port(),
|
||||
prefer_ipv6: false,
|
||||
fast_mode: true,
|
||||
use_middle_proxy: false,
|
||||
user_max_tcp_conns: HashMap::new(),
|
||||
user_expirations: HashMap::new(),
|
||||
user_data_quota: HashMap::new(),
|
||||
replay_check_len: default_replay_check_len(),
|
||||
ignore_time_skew: false,
|
||||
client_handshake_timeout: default_handshake_timeout(),
|
||||
tg_connect_timeout: default_connect_timeout(),
|
||||
client_keepalive: default_keepalive(),
|
||||
client_ack_timeout: default_ack_timeout(),
|
||||
listen_addr_ipv4: default_listen_addr(),
|
||||
listen_addr_ipv6: Some("::".to_string()),
|
||||
listen_unix_sock: None,
|
||||
metrics_port: None,
|
||||
metrics_whitelist: default_metrics_whitelist(),
|
||||
listeners: Vec::new(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct TimeoutsConfig {
|
||||
#[serde(default = "default_handshake_timeout")]
|
||||
pub client_handshake: u64,
|
||||
|
||||
#[serde(default = "default_connect_timeout")]
|
||||
pub tg_connect: u64,
|
||||
|
||||
#[serde(default = "default_keepalive")]
|
||||
pub client_keepalive: u64,
|
||||
|
||||
#[serde(default = "default_ack_timeout")]
|
||||
pub client_ack: u64,
|
||||
}
|
||||
|
||||
impl Default for TimeoutsConfig {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
client_handshake: default_handshake_timeout(),
|
||||
tg_connect: default_connect_timeout(),
|
||||
client_keepalive: default_keepalive(),
|
||||
client_ack: default_ack_timeout(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct AntiCensorshipConfig {
|
||||
#[serde(default = "default_tls_domain")]
|
||||
pub tls_domain: String,
|
||||
|
||||
#[serde(default = "default_true")]
|
||||
pub mask: bool,
|
||||
|
||||
#[serde(default)]
|
||||
pub mask_host: Option<String>,
|
||||
|
||||
#[serde(default = "default_mask_port")]
|
||||
pub mask_port: u16,
|
||||
|
||||
#[serde(default = "default_fake_cert_len")]
|
||||
pub fake_cert_len: usize,
|
||||
}
|
||||
|
||||
impl Default for AntiCensorshipConfig {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
tls_domain: default_tls_domain(),
|
||||
mask: true,
|
||||
mask_host: None,
|
||||
mask_port: default_mask_port(),
|
||||
fake_cert_len: default_fake_cert_len(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct AccessConfig {
|
||||
#[serde(default)]
|
||||
pub users: HashMap<String, String>,
|
||||
|
||||
#[serde(default)]
|
||||
pub user_max_tcp_conns: HashMap<String, usize>,
|
||||
|
||||
#[serde(default)]
|
||||
pub user_expirations: HashMap<String, DateTime<Utc>>,
|
||||
|
||||
#[serde(default)]
|
||||
pub user_data_quota: HashMap<String, u64>,
|
||||
|
||||
#[serde(default = "default_replay_check_len")]
|
||||
pub replay_check_len: usize,
|
||||
|
||||
#[serde(default = "default_replay_window_secs")]
|
||||
pub replay_window_secs: u64,
|
||||
|
||||
#[serde(default)]
|
||||
pub ignore_time_skew: bool,
|
||||
}
|
||||
|
||||
impl Default for AccessConfig {
|
||||
fn default() -> Self {
|
||||
let mut users = HashMap::new();
|
||||
users.insert("default".to_string(), "00000000000000000000000000000000".to_string());
|
||||
Self {
|
||||
users,
|
||||
user_max_tcp_conns: HashMap::new(),
|
||||
user_expirations: HashMap::new(),
|
||||
user_data_quota: HashMap::new(),
|
||||
replay_check_len: default_replay_check_len(),
|
||||
replay_window_secs: default_replay_window_secs(),
|
||||
ignore_time_skew: false,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ============= Aux Structures =============
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
|
||||
#[serde(tag = "type", rename_all = "lowercase")]
|
||||
pub enum UpstreamType {
|
||||
Direct {
|
||||
#[serde(default)]
|
||||
interface: Option<String>,
|
||||
},
|
||||
Socks4 {
|
||||
address: String,
|
||||
#[serde(default)]
|
||||
interface: Option<String>,
|
||||
#[serde(default)]
|
||||
user_id: Option<String>,
|
||||
},
|
||||
Socks5 {
|
||||
address: String,
|
||||
#[serde(default)]
|
||||
interface: Option<String>,
|
||||
#[serde(default)]
|
||||
username: Option<String>,
|
||||
#[serde(default)]
|
||||
password: Option<String>,
|
||||
},
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct UpstreamConfig {
|
||||
#[serde(flatten)]
|
||||
pub upstream_type: UpstreamType,
|
||||
#[serde(default = "default_weight")]
|
||||
pub weight: u16,
|
||||
#[serde(default = "default_true")]
|
||||
pub enabled: bool,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct ListenerConfig {
|
||||
pub ip: IpAddr,
|
||||
#[serde(default)]
|
||||
pub announce_ip: Option<IpAddr>,
|
||||
}
|
||||
|
||||
// ============= Main Config =============
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize, Default)]
|
||||
pub struct ProxyConfig {
|
||||
#[serde(default)]
|
||||
pub general: GeneralConfig,
|
||||
|
||||
#[serde(default)]
|
||||
pub server: ServerConfig,
|
||||
|
||||
#[serde(default)]
|
||||
pub timeouts: TimeoutsConfig,
|
||||
|
||||
#[serde(default)]
|
||||
pub censorship: AntiCensorshipConfig,
|
||||
|
||||
#[serde(default)]
|
||||
pub access: AccessConfig,
|
||||
|
||||
#[serde(default)]
|
||||
pub upstreams: Vec<UpstreamConfig>,
|
||||
|
||||
#[serde(default)]
|
||||
pub show_link: Vec<String>,
|
||||
|
||||
/// DC address overrides for non-standard DCs (CDN, media, test, etc.)
|
||||
/// Keys are DC indices as strings, values are "ip:port" addresses.
|
||||
/// Matches the C implementation's `proxy_for <dc_id> <ip>:<port>` config directive.
|
||||
/// Example in config.toml:
|
||||
/// [dc_overrides]
|
||||
/// "203" = "149.154.175.100:443"
|
||||
#[serde(default)]
|
||||
pub dc_overrides: HashMap<String, String>,
|
||||
|
||||
/// Default DC index (1-5) for unmapped non-standard DCs.
|
||||
/// Matches the C implementation's `default <dc_id>` config directive.
|
||||
/// If not set, defaults to 2 (matching Telegram's official `default 2;` in proxy-multi.conf).
|
||||
#[serde(default)]
|
||||
pub default_dc: Option<u8>,
|
||||
}
|
||||
|
||||
impl ProxyConfig {
|
||||
pub fn load<P: AsRef<Path>>(path: P) -> Result<Self> {
|
||||
let content = std::fs::read_to_string(path)
|
||||
@@ -169,7 +362,7 @@ impl ProxyConfig {
|
||||
.map_err(|e| ProxyError::Config(e.to_string()))?;
|
||||
|
||||
// Validate secrets
|
||||
for (user, secret) in &config.users {
|
||||
for (user, secret) in &config.access.users {
|
||||
if !secret.chars().all(|c| c.is_ascii_hexdigit()) || secret.len() != 32 {
|
||||
return Err(ProxyError::InvalidSecret {
|
||||
user: user.clone(),
|
||||
@@ -178,50 +371,65 @@ impl ProxyConfig {
|
||||
}
|
||||
}
|
||||
|
||||
// Default mask_host
|
||||
if config.mask_host.is_none() {
|
||||
config.mask_host = Some(config.tls_domain.clone());
|
||||
// Validate tls_domain
|
||||
if config.censorship.tls_domain.is_empty() {
|
||||
return Err(ProxyError::Config("tls_domain cannot be empty".to_string()));
|
||||
}
|
||||
|
||||
// Default mask_host to tls_domain if not set
|
||||
if config.censorship.mask_host.is_none() {
|
||||
config.censorship.mask_host = Some(config.censorship.tls_domain.clone());
|
||||
}
|
||||
|
||||
// Random fake_cert_len
|
||||
use rand::Rng;
|
||||
config.fake_cert_len = rand::thread_rng().gen_range(1024..4096);
|
||||
config.censorship.fake_cert_len = rand::rng().gen_range(1024..4096);
|
||||
|
||||
// Migration: Populate listeners if empty
|
||||
if config.server.listeners.is_empty() {
|
||||
if let Ok(ipv4) = config.server.listen_addr_ipv4.parse::<IpAddr>() {
|
||||
config.server.listeners.push(ListenerConfig {
|
||||
ip: ipv4,
|
||||
announce_ip: None,
|
||||
});
|
||||
}
|
||||
if let Some(ipv6_str) = &config.server.listen_addr_ipv6 {
|
||||
if let Ok(ipv6) = ipv6_str.parse::<IpAddr>() {
|
||||
config.server.listeners.push(ListenerConfig {
|
||||
ip: ipv6,
|
||||
announce_ip: None,
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Migration: Populate upstreams if empty (Default Direct)
|
||||
if config.upstreams.is_empty() {
|
||||
config.upstreams.push(UpstreamConfig {
|
||||
upstream_type: UpstreamType::Direct { interface: None },
|
||||
weight: 1,
|
||||
enabled: true,
|
||||
});
|
||||
}
|
||||
|
||||
Ok(config)
|
||||
}
|
||||
|
||||
pub fn validate(&self) -> Result<()> {
|
||||
if self.users.is_empty() {
|
||||
if self.access.users.is_empty() {
|
||||
return Err(ProxyError::Config("No users configured".to_string()));
|
||||
}
|
||||
|
||||
if !self.modes.classic && !self.modes.secure && !self.modes.tls {
|
||||
if !self.general.modes.classic && !self.general.modes.secure && !self.general.modes.tls {
|
||||
return Err(ProxyError::Config("No modes enabled".to_string()));
|
||||
}
|
||||
|
||||
if self.censorship.tls_domain.contains(' ') || self.censorship.tls_domain.contains('/') {
|
||||
return Err(ProxyError::Config(
|
||||
format!("Invalid tls_domain: '{}'. Must be a valid domain name", self.censorship.tls_domain)
|
||||
));
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_default_config() {
|
||||
let config = ProxyConfig::default();
|
||||
assert_eq!(config.port, 443);
|
||||
assert!(config.modes.tls);
|
||||
assert_eq!(config.client_keepalive, 600);
|
||||
assert_eq!(config.client_ack_timeout, 300);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_config_validate() {
|
||||
let mut config = ProxyConfig::default();
|
||||
assert!(config.validate().is_ok());
|
||||
|
||||
config.users.clear();
|
||||
assert!(config.validate().is_err());
|
||||
}
|
||||
}
|
||||
@@ -1,9 +1,19 @@
|
||||
//! AES encryption implementations
|
||||
//!
|
||||
//! Provides AES-256-CTR and AES-256-CBC modes for MTProto encryption.
|
||||
//!
|
||||
//! ## Zeroize policy
|
||||
//!
|
||||
//! - `AesCbc` stores raw key/IV bytes and zeroizes them on drop.
|
||||
//! - `AesCtr` wraps an opaque `Aes256Ctr` cipher from the `ctr` crate.
|
||||
//! The expanded key schedule lives inside that type and cannot be
|
||||
//! zeroized from outside. Callers that hold raw key material (e.g.
|
||||
//! `HandshakeSuccess`, `ObfuscationParams`) are responsible for
|
||||
//! zeroizing their own copies.
|
||||
|
||||
use aes::Aes256;
|
||||
use ctr::{Ctr128BE, cipher::{KeyIvInit, StreamCipher}};
|
||||
use zeroize::Zeroize;
|
||||
use crate::error::{ProxyError, Result};
|
||||
|
||||
type Aes256Ctr = Ctr128BE<Aes256>;
|
||||
@@ -12,7 +22,12 @@ type Aes256Ctr = Ctr128BE<Aes256>;
|
||||
|
||||
/// AES-256-CTR encryptor/decryptor
|
||||
///
|
||||
/// CTR mode is symmetric - encryption and decryption are the same operation.
|
||||
/// CTR mode is symmetric — encryption and decryption are the same operation.
|
||||
///
|
||||
/// **Zeroize note:** The inner `Aes256Ctr` cipher state (expanded key schedule
|
||||
/// + counter) is opaque and cannot be zeroized. If you need to protect key
|
||||
/// material, zeroize the `[u8; 32]` key and `u128` IV at the call site
|
||||
/// before dropping them.
|
||||
pub struct AesCtr {
|
||||
cipher: Aes256Ctr,
|
||||
}
|
||||
@@ -62,14 +77,23 @@ impl AesCtr {
|
||||
|
||||
/// AES-256-CBC cipher with proper chaining
|
||||
///
|
||||
/// Unlike CTR mode, CBC is NOT symmetric - encryption and decryption
|
||||
/// Unlike CTR mode, CBC is NOT symmetric — encryption and decryption
|
||||
/// are different operations. This implementation handles CBC chaining
|
||||
/// correctly across multiple blocks.
|
||||
///
|
||||
/// Key and IV are zeroized on drop.
|
||||
pub struct AesCbc {
|
||||
key: [u8; 32],
|
||||
iv: [u8; 16],
|
||||
}
|
||||
|
||||
impl Drop for AesCbc {
|
||||
fn drop(&mut self) {
|
||||
self.key.zeroize();
|
||||
self.iv.zeroize();
|
||||
}
|
||||
}
|
||||
|
||||
impl AesCbc {
|
||||
/// AES block size
|
||||
const BLOCK_SIZE: usize = 16;
|
||||
@@ -141,17 +165,9 @@ impl AesCbc {
|
||||
|
||||
for chunk in data.chunks(Self::BLOCK_SIZE) {
|
||||
let plaintext: [u8; 16] = chunk.try_into().unwrap();
|
||||
|
||||
// XOR plaintext with previous ciphertext (or IV for first block)
|
||||
let xored = Self::xor_blocks(&plaintext, &prev_ciphertext);
|
||||
|
||||
// Encrypt the XORed block
|
||||
let ciphertext = self.encrypt_block(&xored, &key_schedule);
|
||||
|
||||
// Save for next iteration
|
||||
prev_ciphertext = ciphertext;
|
||||
|
||||
// Append to result
|
||||
result.extend_from_slice(&ciphertext);
|
||||
}
|
||||
|
||||
@@ -180,17 +196,9 @@ impl AesCbc {
|
||||
|
||||
for chunk in data.chunks(Self::BLOCK_SIZE) {
|
||||
let ciphertext: [u8; 16] = chunk.try_into().unwrap();
|
||||
|
||||
// Decrypt the block
|
||||
let decrypted = self.decrypt_block(&ciphertext, &key_schedule);
|
||||
|
||||
// XOR with previous ciphertext (or IV for first block)
|
||||
let plaintext = Self::xor_blocks(&decrypted, &prev_ciphertext);
|
||||
|
||||
// Save current ciphertext for next iteration
|
||||
prev_ciphertext = ciphertext;
|
||||
|
||||
// Append to result
|
||||
result.extend_from_slice(&plaintext);
|
||||
}
|
||||
|
||||
@@ -217,16 +225,13 @@ impl AesCbc {
|
||||
for i in (0..data.len()).step_by(Self::BLOCK_SIZE) {
|
||||
let block = &mut data[i..i + Self::BLOCK_SIZE];
|
||||
|
||||
// XOR with previous ciphertext
|
||||
for j in 0..Self::BLOCK_SIZE {
|
||||
block[j] ^= prev_ciphertext[j];
|
||||
}
|
||||
|
||||
// Encrypt in-place
|
||||
let block_array: &mut [u8; 16] = block.try_into().unwrap();
|
||||
*block_array = self.encrypt_block(block_array, &key_schedule);
|
||||
|
||||
// Save for next iteration
|
||||
prev_ciphertext = *block_array;
|
||||
}
|
||||
|
||||
@@ -248,26 +253,20 @@ impl AesCbc {
|
||||
use aes::cipher::KeyInit;
|
||||
let key_schedule = aes::Aes256::new((&self.key).into());
|
||||
|
||||
// For in-place decryption, we need to save ciphertext blocks
|
||||
// before we overwrite them
|
||||
let mut prev_ciphertext = self.iv;
|
||||
|
||||
for i in (0..data.len()).step_by(Self::BLOCK_SIZE) {
|
||||
let block = &mut data[i..i + Self::BLOCK_SIZE];
|
||||
|
||||
// Save current ciphertext before modifying
|
||||
let current_ciphertext: [u8; 16] = block.try_into().unwrap();
|
||||
|
||||
// Decrypt in-place
|
||||
let block_array: &mut [u8; 16] = block.try_into().unwrap();
|
||||
*block_array = self.decrypt_block(block_array, &key_schedule);
|
||||
|
||||
// XOR with previous ciphertext
|
||||
for j in 0..Self::BLOCK_SIZE {
|
||||
block[j] ^= prev_ciphertext[j];
|
||||
}
|
||||
|
||||
// Save for next iteration
|
||||
prev_ciphertext = current_ciphertext;
|
||||
}
|
||||
|
||||
@@ -347,10 +346,8 @@ mod tests {
|
||||
let mut cipher = AesCtr::new(&key, iv);
|
||||
cipher.apply(&mut data);
|
||||
|
||||
// Encrypted should be different
|
||||
assert_ne!(&data[..], original);
|
||||
|
||||
// Decrypt with fresh cipher
|
||||
let mut cipher = AesCtr::new(&key, iv);
|
||||
cipher.apply(&mut data);
|
||||
|
||||
@@ -364,7 +361,7 @@ mod tests {
|
||||
let key = [0u8; 32];
|
||||
let iv = [0u8; 16];
|
||||
|
||||
let original = [0u8; 32]; // 2 blocks
|
||||
let original = [0u8; 32];
|
||||
|
||||
let cipher = AesCbc::new(key, iv);
|
||||
let encrypted = cipher.encrypt(&original).unwrap();
|
||||
@@ -375,31 +372,25 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_aes_cbc_chaining_works() {
|
||||
// This is the key test - verify CBC chaining is correct
|
||||
let key = [0x42u8; 32];
|
||||
let iv = [0x00u8; 16];
|
||||
|
||||
// Two IDENTICAL plaintext blocks
|
||||
let plaintext = [0xAAu8; 32];
|
||||
|
||||
let cipher = AesCbc::new(key, iv);
|
||||
let ciphertext = cipher.encrypt(&plaintext).unwrap();
|
||||
|
||||
// With proper CBC, identical plaintext blocks produce DIFFERENT ciphertext
|
||||
let block1 = &ciphertext[0..16];
|
||||
let block2 = &ciphertext[16..32];
|
||||
|
||||
assert_ne!(
|
||||
block1, block2,
|
||||
"CBC chaining broken: identical plaintext blocks produced identical ciphertext. \
|
||||
This indicates ECB mode, not CBC!"
|
||||
"CBC chaining broken: identical plaintext blocks produced identical ciphertext"
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_aes_cbc_known_vector() {
|
||||
// Test with known NIST test vector
|
||||
// AES-256-CBC with zero key and zero IV
|
||||
let key = [0u8; 32];
|
||||
let iv = [0u8; 16];
|
||||
let plaintext = [0u8; 16];
|
||||
@@ -407,11 +398,9 @@ mod tests {
|
||||
let cipher = AesCbc::new(key, iv);
|
||||
let ciphertext = cipher.encrypt(&plaintext).unwrap();
|
||||
|
||||
// Decrypt and verify roundtrip
|
||||
let decrypted = cipher.decrypt(&ciphertext).unwrap();
|
||||
assert_eq!(plaintext.as_slice(), decrypted.as_slice());
|
||||
|
||||
// Ciphertext should not be all zeros
|
||||
assert_ne!(ciphertext.as_slice(), plaintext.as_slice());
|
||||
}
|
||||
|
||||
@@ -420,7 +409,6 @@ mod tests {
|
||||
let key = [0x12u8; 32];
|
||||
let iv = [0x34u8; 16];
|
||||
|
||||
// 5 blocks = 80 bytes
|
||||
let plaintext: Vec<u8> = (0..80).collect();
|
||||
|
||||
let cipher = AesCbc::new(key, iv);
|
||||
@@ -435,7 +423,7 @@ mod tests {
|
||||
let key = [0x12u8; 32];
|
||||
let iv = [0x34u8; 16];
|
||||
|
||||
let original = [0x56u8; 48]; // 3 blocks
|
||||
let original = [0x56u8; 48];
|
||||
let mut buffer = original;
|
||||
|
||||
let cipher = AesCbc::new(key, iv);
|
||||
@@ -462,41 +450,33 @@ mod tests {
|
||||
fn test_aes_cbc_unaligned_error() {
|
||||
let cipher = AesCbc::new([0u8; 32], [0u8; 16]);
|
||||
|
||||
// 15 bytes - not aligned to block size
|
||||
let result = cipher.encrypt(&[0u8; 15]);
|
||||
assert!(result.is_err());
|
||||
|
||||
// 17 bytes - not aligned
|
||||
let result = cipher.encrypt(&[0u8; 17]);
|
||||
assert!(result.is_err());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_aes_cbc_avalanche_effect() {
|
||||
// Changing one bit in plaintext should change entire ciphertext block
|
||||
// and all subsequent blocks (due to chaining)
|
||||
let key = [0xAB; 32];
|
||||
let iv = [0xCD; 16];
|
||||
|
||||
let mut plaintext1 = [0u8; 32];
|
||||
let plaintext1 = [0u8; 32];
|
||||
let mut plaintext2 = [0u8; 32];
|
||||
plaintext2[0] = 0x01; // Single bit difference in first block
|
||||
plaintext2[0] = 0x01;
|
||||
|
||||
let cipher = AesCbc::new(key, iv);
|
||||
|
||||
let ciphertext1 = cipher.encrypt(&plaintext1).unwrap();
|
||||
let ciphertext2 = cipher.encrypt(&plaintext2).unwrap();
|
||||
|
||||
// First blocks should be different
|
||||
assert_ne!(&ciphertext1[0..16], &ciphertext2[0..16]);
|
||||
|
||||
// Second blocks should ALSO be different (chaining effect)
|
||||
assert_ne!(&ciphertext1[16..32], &ciphertext2[16..32]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_aes_cbc_iv_matters() {
|
||||
// Same plaintext with different IVs should produce different ciphertext
|
||||
let key = [0x55; 32];
|
||||
let plaintext = [0x77u8; 16];
|
||||
|
||||
@@ -511,7 +491,6 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_aes_cbc_deterministic() {
|
||||
// Same key, IV, plaintext should always produce same ciphertext
|
||||
let key = [0x99; 32];
|
||||
let iv = [0x88; 16];
|
||||
let plaintext = [0x77u8; 32];
|
||||
@@ -524,6 +503,23 @@ mod tests {
|
||||
assert_eq!(ciphertext1, ciphertext2);
|
||||
}
|
||||
|
||||
// ============= Zeroize Tests =============
|
||||
|
||||
#[test]
|
||||
fn test_aes_cbc_zeroize_on_drop() {
|
||||
let key = [0xAA; 32];
|
||||
let iv = [0xBB; 16];
|
||||
|
||||
let cipher = AesCbc::new(key, iv);
|
||||
// Verify key/iv are set
|
||||
assert_eq!(cipher.key, [0xAA; 32]);
|
||||
assert_eq!(cipher.iv, [0xBB; 16]);
|
||||
|
||||
drop(cipher);
|
||||
// After drop, key/iv are zeroized (can't observe directly,
|
||||
// but the Drop impl runs without panic)
|
||||
}
|
||||
|
||||
// ============= Error Handling Tests =============
|
||||
|
||||
#[test]
|
||||
|
||||
@@ -1,3 +1,16 @@
|
||||
//! Cryptographic hash functions
|
||||
//!
|
||||
//! ## Protocol-required algorithms
|
||||
//!
|
||||
//! This module exposes MD5 and SHA-1 alongside SHA-256. These weaker
|
||||
//! hash functions are **required by the Telegram Middle Proxy protocol**
|
||||
//! (`derive_middleproxy_keys`) and cannot be replaced without breaking
|
||||
//! compatibility. They are NOT used for any security-sensitive purpose
|
||||
//! outside of that specific key derivation scheme mandated by Telegram.
|
||||
//!
|
||||
//! Static analysis tools (CodeQL, cargo-audit) may flag them — the
|
||||
//! usages are intentional and protocol-mandated.
|
||||
|
||||
use hmac::{Hmac, Mac};
|
||||
use sha2::Sha256;
|
||||
use md5::Md5;
|
||||
@@ -21,14 +34,16 @@ pub fn sha256_hmac(key: &[u8], data: &[u8]) -> [u8; 32] {
|
||||
mac.finalize().into_bytes().into()
|
||||
}
|
||||
|
||||
/// SHA-1
|
||||
/// SHA-1 — **protocol-required** by Telegram Middle Proxy key derivation.
|
||||
/// Not used for general-purpose hashing.
|
||||
pub fn sha1(data: &[u8]) -> [u8; 20] {
|
||||
let mut hasher = Sha1::new();
|
||||
hasher.update(data);
|
||||
hasher.finalize().into()
|
||||
}
|
||||
|
||||
/// MD5
|
||||
/// MD5 — **protocol-required** by Telegram Middle Proxy key derivation.
|
||||
/// Not used for general-purpose hashing.
|
||||
pub fn md5(data: &[u8]) -> [u8; 16] {
|
||||
let mut hasher = Md5::new();
|
||||
hasher.update(data);
|
||||
@@ -40,7 +55,11 @@ pub fn crc32(data: &[u8]) -> u32 {
|
||||
crc32fast::hash(data)
|
||||
}
|
||||
|
||||
/// Middle Proxy Keygen
|
||||
/// Middle Proxy key derivation
|
||||
///
|
||||
/// Uses MD5 + SHA-1 as mandated by the Telegram Middle Proxy protocol.
|
||||
/// These algorithms are NOT replaceable here — changing them would break
|
||||
/// interoperability with Telegram's middle proxy infrastructure.
|
||||
pub fn derive_middleproxy_keys(
|
||||
nonce_srv: &[u8; 16],
|
||||
nonce_clt: &[u8; 16],
|
||||
|
||||
@@ -6,4 +6,4 @@ pub mod random;
|
||||
|
||||
pub use aes::{AesCtr, AesCbc};
|
||||
pub use hash::{sha256, sha256_hmac, sha1, md5, crc32};
|
||||
pub use random::{SecureRandom, SECURE_RANDOM};
|
||||
pub use random::SecureRandom;
|
||||
@@ -3,11 +3,8 @@
|
||||
use rand::{Rng, RngCore, SeedableRng};
|
||||
use rand::rngs::StdRng;
|
||||
use parking_lot::Mutex;
|
||||
use zeroize::Zeroize;
|
||||
use crate::crypto::AesCtr;
|
||||
use once_cell::sync::Lazy;
|
||||
|
||||
/// Global secure random instance
|
||||
pub static SECURE_RANDOM: Lazy<SecureRandom> = Lazy::new(SecureRandom::new);
|
||||
|
||||
/// Cryptographically secure PRNG with AES-CTR
|
||||
pub struct SecureRandom {
|
||||
@@ -20,18 +17,30 @@ struct SecureRandomInner {
|
||||
buffer: Vec<u8>,
|
||||
}
|
||||
|
||||
impl Drop for SecureRandomInner {
|
||||
fn drop(&mut self) {
|
||||
self.buffer.zeroize();
|
||||
}
|
||||
}
|
||||
|
||||
impl SecureRandom {
|
||||
pub fn new() -> Self {
|
||||
let mut rng = StdRng::from_entropy();
|
||||
let mut seed_source = rand::rng();
|
||||
let mut rng = StdRng::from_rng(&mut seed_source);
|
||||
|
||||
let mut key = [0u8; 32];
|
||||
rng.fill_bytes(&mut key);
|
||||
let iv: u128 = rng.gen();
|
||||
let iv: u128 = rng.random();
|
||||
|
||||
let cipher = AesCtr::new(&key, iv);
|
||||
|
||||
// Zeroize local key copy — cipher already consumed it
|
||||
key.zeroize();
|
||||
|
||||
Self {
|
||||
inner: Mutex::new(SecureRandomInner {
|
||||
rng,
|
||||
cipher: AesCtr::new(&key, iv),
|
||||
cipher,
|
||||
buffer: Vec::with_capacity(1024),
|
||||
}),
|
||||
}
|
||||
@@ -78,7 +87,6 @@ impl SecureRandom {
|
||||
result |= (b as u64) << (i * 8);
|
||||
}
|
||||
|
||||
// Mask extra bits
|
||||
if k < 64 {
|
||||
result &= (1u64 << k) - 1;
|
||||
}
|
||||
@@ -107,13 +115,13 @@ impl SecureRandom {
|
||||
/// Generate random u32
|
||||
pub fn u32(&self) -> u32 {
|
||||
let mut inner = self.inner.lock();
|
||||
inner.rng.gen()
|
||||
inner.rng.random()
|
||||
}
|
||||
|
||||
/// Generate random u64
|
||||
pub fn u64(&self) -> u64 {
|
||||
let mut inner = self.inner.lock();
|
||||
inner.rng.gen()
|
||||
inner.rng.random()
|
||||
}
|
||||
}
|
||||
|
||||
@@ -162,12 +170,10 @@ mod tests {
|
||||
fn test_bits() {
|
||||
let rng = SecureRandom::new();
|
||||
|
||||
// Single bit should be 0 or 1
|
||||
for _ in 0..100 {
|
||||
assert!(rng.bits(1) <= 1);
|
||||
}
|
||||
|
||||
// 8 bits should be 0-255
|
||||
for _ in 0..100 {
|
||||
assert!(rng.bits(8) <= 255);
|
||||
}
|
||||
@@ -185,10 +191,8 @@ mod tests {
|
||||
}
|
||||
}
|
||||
|
||||
// Should have seen all items
|
||||
assert_eq!(seen.len(), 5);
|
||||
|
||||
// Empty slice should return None
|
||||
let empty: Vec<i32> = vec![];
|
||||
assert!(rng.choose(&empty).is_none());
|
||||
}
|
||||
@@ -201,12 +205,10 @@ mod tests {
|
||||
let mut shuffled = original.clone();
|
||||
rng.shuffle(&mut shuffled);
|
||||
|
||||
// Should contain same elements
|
||||
let mut sorted = shuffled.clone();
|
||||
sorted.sort();
|
||||
assert_eq!(sorted, original);
|
||||
|
||||
// Should be different order (with very high probability)
|
||||
assert_ne!(shuffled, original);
|
||||
}
|
||||
}
|
||||
53
src/error.rs
53
src/error.rs
@@ -118,16 +118,13 @@ pub trait Recoverable {
|
||||
impl Recoverable for StreamError {
|
||||
fn is_recoverable(&self) -> bool {
|
||||
match self {
|
||||
// Partial operations can be retried
|
||||
Self::PartialRead { .. } | Self::PartialWrite { .. } => true,
|
||||
// I/O errors depend on kind
|
||||
Self::Io(e) => matches!(
|
||||
e.kind(),
|
||||
std::io::ErrorKind::WouldBlock
|
||||
| std::io::ErrorKind::Interrupted
|
||||
| std::io::ErrorKind::TimedOut
|
||||
),
|
||||
// These are not recoverable
|
||||
Self::Poisoned { .. }
|
||||
| Self::BufferOverflow { .. }
|
||||
| Self::InvalidFrame { .. }
|
||||
@@ -137,13 +134,9 @@ impl Recoverable for StreamError {
|
||||
|
||||
fn can_continue(&self) -> bool {
|
||||
match self {
|
||||
// Poisoned stream cannot be used
|
||||
Self::Poisoned { .. } => false,
|
||||
// EOF means stream is done
|
||||
Self::UnexpectedEof => false,
|
||||
// Buffer overflow is fatal
|
||||
Self::BufferOverflow { .. } => false,
|
||||
// Others might allow continuation
|
||||
_ => true,
|
||||
}
|
||||
}
|
||||
@@ -235,6 +228,9 @@ pub enum ProxyError {
|
||||
#[error("Invalid proxy protocol header")]
|
||||
InvalidProxyProtocol,
|
||||
|
||||
#[error("Proxy error: {0}")]
|
||||
Proxy(String),
|
||||
|
||||
// ============= Config Errors =============
|
||||
|
||||
#[error("Config error: {0}")]
|
||||
@@ -294,16 +290,16 @@ pub type StreamResult<T> = std::result::Result<T, StreamError>;
|
||||
|
||||
/// Result with optional bad client handling
|
||||
#[derive(Debug)]
|
||||
pub enum HandshakeResult<T> {
|
||||
pub enum HandshakeResult<T, R, W> {
|
||||
/// Handshake succeeded
|
||||
Success(T),
|
||||
/// Client failed validation, needs masking
|
||||
BadClient,
|
||||
/// Client failed validation, needs masking. Returns ownership of streams.
|
||||
BadClient { reader: R, writer: W },
|
||||
/// Error occurred
|
||||
Error(ProxyError),
|
||||
}
|
||||
|
||||
impl<T> HandshakeResult<T> {
|
||||
impl<T, R, W> HandshakeResult<T, R, W> {
|
||||
/// Check if successful
|
||||
pub fn is_success(&self) -> bool {
|
||||
matches!(self, HandshakeResult::Success(_))
|
||||
@@ -311,49 +307,32 @@ impl<T> HandshakeResult<T> {
|
||||
|
||||
/// Check if bad client
|
||||
pub fn is_bad_client(&self) -> bool {
|
||||
matches!(self, HandshakeResult::BadClient)
|
||||
}
|
||||
|
||||
/// Convert to Result, treating BadClient as error
|
||||
pub fn into_result(self) -> Result<T> {
|
||||
match self {
|
||||
HandshakeResult::Success(v) => Ok(v),
|
||||
HandshakeResult::BadClient => Err(ProxyError::InvalidHandshake("Bad client".into())),
|
||||
HandshakeResult::Error(e) => Err(e),
|
||||
}
|
||||
matches!(self, HandshakeResult::BadClient { .. })
|
||||
}
|
||||
|
||||
/// Map the success value
|
||||
pub fn map<U, F: FnOnce(T) -> U>(self, f: F) -> HandshakeResult<U> {
|
||||
pub fn map<U, F: FnOnce(T) -> U>(self, f: F) -> HandshakeResult<U, R, W> {
|
||||
match self {
|
||||
HandshakeResult::Success(v) => HandshakeResult::Success(f(v)),
|
||||
HandshakeResult::BadClient => HandshakeResult::BadClient,
|
||||
HandshakeResult::BadClient { reader, writer } => HandshakeResult::BadClient { reader, writer },
|
||||
HandshakeResult::Error(e) => HandshakeResult::Error(e),
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert success to Option
|
||||
pub fn ok(self) -> Option<T> {
|
||||
match self {
|
||||
HandshakeResult::Success(v) => Some(v),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> From<ProxyError> for HandshakeResult<T> {
|
||||
impl<T, R, W> From<ProxyError> for HandshakeResult<T, R, W> {
|
||||
fn from(err: ProxyError) -> Self {
|
||||
HandshakeResult::Error(err)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> From<std::io::Error> for HandshakeResult<T> {
|
||||
impl<T, R, W> From<std::io::Error> for HandshakeResult<T, R, W> {
|
||||
fn from(err: std::io::Error) -> Self {
|
||||
HandshakeResult::Error(ProxyError::Io(err))
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> From<StreamError> for HandshakeResult<T> {
|
||||
impl<T, R, W> From<StreamError> for HandshakeResult<T, R, W> {
|
||||
fn from(err: StreamError) -> Self {
|
||||
HandshakeResult::Error(ProxyError::Stream(err))
|
||||
}
|
||||
@@ -397,18 +376,18 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_handshake_result() {
|
||||
let success: HandshakeResult<i32> = HandshakeResult::Success(42);
|
||||
let success: HandshakeResult<i32, (), ()> = HandshakeResult::Success(42);
|
||||
assert!(success.is_success());
|
||||
assert!(!success.is_bad_client());
|
||||
|
||||
let bad: HandshakeResult<i32> = HandshakeResult::BadClient;
|
||||
let bad: HandshakeResult<i32, (), ()> = HandshakeResult::BadClient { reader: (), writer: () };
|
||||
assert!(!bad.is_success());
|
||||
assert!(bad.is_bad_client());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_handshake_result_map() {
|
||||
let success: HandshakeResult<i32> = HandshakeResult::Success(42);
|
||||
let success: HandshakeResult<i32, (), ()> = HandshakeResult::Success(42);
|
||||
let mapped = success.map(|x| x * 2);
|
||||
|
||||
match mapped {
|
||||
|
||||
406
src/main.rs
406
src/main.rs
@@ -1,158 +1,306 @@
|
||||
//! Telemt - MTProxy on Rust
|
||||
|
||||
use std::sync::Arc;
|
||||
use std::net::SocketAddr;
|
||||
use std::sync::Arc;
|
||||
use std::time::Duration;
|
||||
use tokio::net::TcpListener;
|
||||
use tokio::signal;
|
||||
use tracing::{info, error, Level};
|
||||
use tracing_subscriber::{FmtSubscriber, EnvFilter};
|
||||
use tokio::sync::Semaphore;
|
||||
use tracing::{info, error, warn, debug};
|
||||
use tracing_subscriber::{fmt, EnvFilter, reload, prelude::*};
|
||||
|
||||
mod error;
|
||||
mod cli;
|
||||
mod config;
|
||||
mod crypto;
|
||||
mod error;
|
||||
mod protocol;
|
||||
mod proxy;
|
||||
mod stats;
|
||||
mod stream;
|
||||
mod transport;
|
||||
mod proxy;
|
||||
mod config;
|
||||
mod stats;
|
||||
mod util;
|
||||
|
||||
use config::ProxyConfig;
|
||||
use stats::{Stats, ReplayChecker};
|
||||
use transport::ConnectionPool;
|
||||
use proxy::ClientHandler;
|
||||
use crate::config::{ProxyConfig, LogLevel};
|
||||
use crate::proxy::ClientHandler;
|
||||
use crate::stats::{Stats, ReplayChecker};
|
||||
use crate::crypto::SecureRandom;
|
||||
use crate::transport::{create_listener, ListenOptions, UpstreamManager};
|
||||
use crate::util::ip::detect_ip;
|
||||
use crate::stream::BufferPool;
|
||||
|
||||
#[tokio::main]
|
||||
async fn main() -> std::result::Result<(), Box<dyn std::error::Error>> {
|
||||
// Initialize logging with env filter
|
||||
// Use RUST_LOG=debug or RUST_LOG=trace for more details
|
||||
let filter = EnvFilter::try_from_default_env()
|
||||
.unwrap_or_else(|_| EnvFilter::new("info"));
|
||||
fn parse_cli() -> (String, bool, Option<String>) {
|
||||
let mut config_path = "config.toml".to_string();
|
||||
let mut silent = false;
|
||||
let mut log_level: Option<String> = None;
|
||||
|
||||
let subscriber = FmtSubscriber::builder()
|
||||
.with_env_filter(filter)
|
||||
.with_target(true)
|
||||
.with_thread_ids(false)
|
||||
.with_file(false)
|
||||
.with_line_number(false)
|
||||
.finish();
|
||||
let args: Vec<String> = std::env::args().skip(1).collect();
|
||||
|
||||
tracing::subscriber::set_global_default(subscriber)?;
|
||||
|
||||
// Load configuration
|
||||
let config_path = std::env::args()
|
||||
.nth(1)
|
||||
.unwrap_or_else(|| "config.toml".to_string());
|
||||
|
||||
info!("Loading configuration from {}", config_path);
|
||||
|
||||
let config = ProxyConfig::load(&config_path).unwrap_or_else(|e| {
|
||||
error!("Failed to load config: {}", e);
|
||||
info!("Using default configuration");
|
||||
ProxyConfig::default()
|
||||
});
|
||||
|
||||
if let Err(e) = config.validate() {
|
||||
error!("Invalid configuration: {}", e);
|
||||
// Check for --init first (handled before tokio)
|
||||
if let Some(init_opts) = cli::parse_init_args(&args) {
|
||||
if let Err(e) = cli::run_init(init_opts) {
|
||||
eprintln!("[telemt] Init failed: {}", e);
|
||||
std::process::exit(1);
|
||||
}
|
||||
|
||||
let config = Arc::new(config);
|
||||
|
||||
info!("Starting MTProto Proxy on port {}", config.port);
|
||||
info!("Fast mode: {}", config.fast_mode);
|
||||
info!("Modes: classic={}, secure={}, tls={}",
|
||||
config.modes.classic, config.modes.secure, config.modes.tls);
|
||||
|
||||
// Initialize components
|
||||
let stats = Arc::new(Stats::new());
|
||||
let replay_checker = Arc::new(ReplayChecker::new(config.replay_check_len));
|
||||
let pool = Arc::new(ConnectionPool::new());
|
||||
|
||||
// Create handler
|
||||
let handler = Arc::new(ClientHandler::new(
|
||||
Arc::clone(&config),
|
||||
Arc::clone(&stats),
|
||||
Arc::clone(&replay_checker),
|
||||
Arc::clone(&pool),
|
||||
));
|
||||
|
||||
// Start listener
|
||||
let addr: SocketAddr = format!("{}:{}", config.listen_addr_ipv4, config.port)
|
||||
.parse()?;
|
||||
|
||||
let listener = TcpListener::bind(addr).await?;
|
||||
info!("Listening on {}", addr);
|
||||
|
||||
// Print proxy links
|
||||
print_proxy_links(&config);
|
||||
|
||||
info!("Use RUST_LOG=debug or RUST_LOG=trace for more detailed logging");
|
||||
|
||||
// Main accept loop
|
||||
let accept_loop = async {
|
||||
loop {
|
||||
match listener.accept().await {
|
||||
Ok((stream, peer)) => {
|
||||
let handler = Arc::clone(&handler);
|
||||
tokio::spawn(async move {
|
||||
handler.handle(stream, peer).await;
|
||||
});
|
||||
std::process::exit(0);
|
||||
}
|
||||
|
||||
let mut i = 0;
|
||||
while i < args.len() {
|
||||
match args[i].as_str() {
|
||||
"--silent" | "-s" => { silent = true; }
|
||||
"--log-level" => {
|
||||
i += 1;
|
||||
if i < args.len() { log_level = Some(args[i].clone()); }
|
||||
}
|
||||
s if s.starts_with("--log-level=") => {
|
||||
log_level = Some(s.trim_start_matches("--log-level=").to_string());
|
||||
}
|
||||
"--help" | "-h" => {
|
||||
eprintln!("Usage: telemt [config.toml] [OPTIONS]");
|
||||
eprintln!();
|
||||
eprintln!("Options:");
|
||||
eprintln!(" --silent, -s Suppress info logs");
|
||||
eprintln!(" --log-level <LEVEL> debug|verbose|normal|silent");
|
||||
eprintln!(" --help, -h Show this help");
|
||||
eprintln!();
|
||||
eprintln!("Setup (fire-and-forget):");
|
||||
eprintln!(" --init Generate config, install systemd service, start");
|
||||
eprintln!(" --port <PORT> Listen port (default: 443)");
|
||||
eprintln!(" --domain <DOMAIN> TLS domain for masking (default: www.google.com)");
|
||||
eprintln!(" --secret <HEX> 32-char hex secret (auto-generated if omitted)");
|
||||
eprintln!(" --user <NAME> Username (default: user)");
|
||||
eprintln!(" --config-dir <DIR> Config directory (default: /etc/telemt)");
|
||||
eprintln!(" --no-start Don't start the service after install");
|
||||
std::process::exit(0);
|
||||
}
|
||||
s if !s.starts_with('-') => { config_path = s.to_string(); }
|
||||
other => { eprintln!("Unknown option: {}", other); }
|
||||
}
|
||||
i += 1;
|
||||
}
|
||||
|
||||
(config_path, silent, log_level)
|
||||
}
|
||||
|
||||
#[tokio::main]
|
||||
async fn main() -> Result<(), Box<dyn std::error::Error>> {
|
||||
let (config_path, cli_silent, cli_log_level) = parse_cli();
|
||||
|
||||
let config = match ProxyConfig::load(&config_path) {
|
||||
Ok(c) => c,
|
||||
Err(e) => {
|
||||
error!("Accept error: {}", e);
|
||||
}
|
||||
if std::path::Path::new(&config_path).exists() {
|
||||
eprintln!("[telemt] Error: {}", e);
|
||||
std::process::exit(1);
|
||||
} else {
|
||||
let default = ProxyConfig::default();
|
||||
std::fs::write(&config_path, toml::to_string_pretty(&default).unwrap()).unwrap();
|
||||
eprintln!("[telemt] Created default config at {}", config_path);
|
||||
default
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Graceful shutdown
|
||||
tokio::select! {
|
||||
_ = accept_loop => {}
|
||||
_ = signal::ctrl_c() => {
|
||||
info!("Shutting down...");
|
||||
if let Err(e) = config.validate() {
|
||||
eprintln!("[telemt] Invalid config: {}", e);
|
||||
std::process::exit(1);
|
||||
}
|
||||
|
||||
let has_rust_log = std::env::var("RUST_LOG").is_ok();
|
||||
let effective_log_level = if cli_silent {
|
||||
LogLevel::Silent
|
||||
} else if let Some(ref s) = cli_log_level {
|
||||
LogLevel::from_str_loose(s)
|
||||
} else {
|
||||
config.general.log_level.clone()
|
||||
};
|
||||
|
||||
// Start with INFO so startup messages are always visible,
|
||||
// then switch to user-configured level after startup
|
||||
let (filter_layer, filter_handle) = reload::Layer::new(EnvFilter::new("info"));
|
||||
tracing_subscriber::registry()
|
||||
.with(filter_layer)
|
||||
.with(fmt::Layer::default())
|
||||
.init();
|
||||
|
||||
info!("Telemt MTProxy v{}", env!("CARGO_PKG_VERSION"));
|
||||
info!("Log level: {}", effective_log_level);
|
||||
info!("Modes: classic={} secure={} tls={}",
|
||||
config.general.modes.classic,
|
||||
config.general.modes.secure,
|
||||
config.general.modes.tls);
|
||||
info!("TLS domain: {}", config.censorship.tls_domain);
|
||||
info!("Mask: {} -> {}:{}",
|
||||
config.censorship.mask,
|
||||
config.censorship.mask_host.as_deref().unwrap_or(&config.censorship.tls_domain),
|
||||
config.censorship.mask_port);
|
||||
|
||||
if config.censorship.tls_domain == "www.google.com" {
|
||||
warn!("Using default tls_domain. Consider setting a custom domain.");
|
||||
}
|
||||
|
||||
let prefer_ipv6 = config.general.prefer_ipv6;
|
||||
let config = Arc::new(config);
|
||||
let stats = Arc::new(Stats::new());
|
||||
let rng = Arc::new(SecureRandom::new());
|
||||
|
||||
let replay_checker = Arc::new(ReplayChecker::new(
|
||||
config.access.replay_check_len,
|
||||
Duration::from_secs(config.access.replay_window_secs),
|
||||
));
|
||||
|
||||
let upstream_manager = Arc::new(UpstreamManager::new(config.upstreams.clone()));
|
||||
let buffer_pool = Arc::new(BufferPool::with_config(16 * 1024, 4096));
|
||||
|
||||
// Connection concurrency limit — prevents OOM under SYN flood / connection storm.
|
||||
// 10000 is generous; each connection uses ~64KB (2x 16KB relay buffers + overhead).
|
||||
// 10000 connections ≈ 640MB peak memory.
|
||||
let max_connections = Arc::new(Semaphore::new(10_000));
|
||||
|
||||
// Startup DC ping
|
||||
info!("=== Telegram DC Connectivity ===");
|
||||
let ping_results = upstream_manager.ping_all_dcs(prefer_ipv6).await;
|
||||
for upstream_result in &ping_results {
|
||||
info!(" via {}", upstream_result.upstream_name);
|
||||
for dc in &upstream_result.results {
|
||||
match (&dc.rtt_ms, &dc.error) {
|
||||
(Some(rtt), _) => {
|
||||
info!(" DC{} ({:>21}): {:.0}ms", dc.dc_idx, dc.dc_addr, rtt);
|
||||
}
|
||||
(None, Some(err)) => {
|
||||
info!(" DC{} ({:>21}): FAIL ({})", dc.dc_idx, dc.dc_addr, err);
|
||||
}
|
||||
_ => {
|
||||
info!(" DC{} ({:>21}): FAIL", dc.dc_idx, dc.dc_addr);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
info!("================================");
|
||||
|
||||
// Background tasks
|
||||
let um_clone = upstream_manager.clone();
|
||||
tokio::spawn(async move { um_clone.run_health_checks(prefer_ipv6).await; });
|
||||
|
||||
let rc_clone = replay_checker.clone();
|
||||
tokio::spawn(async move { rc_clone.run_periodic_cleanup().await; });
|
||||
|
||||
let detected_ip = detect_ip().await;
|
||||
debug!("Detected IPs: v4={:?} v6={:?}", detected_ip.ipv4, detected_ip.ipv6);
|
||||
|
||||
let mut listeners = Vec::new();
|
||||
|
||||
for listener_conf in &config.server.listeners {
|
||||
let addr = SocketAddr::new(listener_conf.ip, config.server.port);
|
||||
let options = ListenOptions {
|
||||
ipv6_only: listener_conf.ip.is_ipv6(),
|
||||
..Default::default()
|
||||
};
|
||||
|
||||
match create_listener(addr, &options) {
|
||||
Ok(socket) => {
|
||||
let listener = TcpListener::from_std(socket.into())?;
|
||||
info!("Listening on {}", addr);
|
||||
|
||||
let public_ip = if let Some(ip) = listener_conf.announce_ip {
|
||||
ip
|
||||
} else if listener_conf.ip.is_unspecified() {
|
||||
if listener_conf.ip.is_ipv4() {
|
||||
detected_ip.ipv4.unwrap_or(listener_conf.ip)
|
||||
} else {
|
||||
detected_ip.ipv6.unwrap_or(listener_conf.ip)
|
||||
}
|
||||
} else {
|
||||
listener_conf.ip
|
||||
};
|
||||
|
||||
if !config.show_link.is_empty() {
|
||||
info!("--- Proxy Links ({}) ---", public_ip);
|
||||
for user_name in &config.show_link {
|
||||
if let Some(secret) = config.access.users.get(user_name) {
|
||||
info!("User: {}", user_name);
|
||||
if config.general.modes.classic {
|
||||
info!(" Classic: tg://proxy?server={}&port={}&secret={}",
|
||||
public_ip, config.server.port, secret);
|
||||
}
|
||||
if config.general.modes.secure {
|
||||
info!(" DD: tg://proxy?server={}&port={}&secret=dd{}",
|
||||
public_ip, config.server.port, secret);
|
||||
}
|
||||
if config.general.modes.tls {
|
||||
let domain_hex = hex::encode(&config.censorship.tls_domain);
|
||||
info!(" EE-TLS: tg://proxy?server={}&port={}&secret=ee{}{}",
|
||||
public_ip, config.server.port, secret, domain_hex);
|
||||
}
|
||||
} else {
|
||||
warn!("User '{}' in show_link not found", user_name);
|
||||
}
|
||||
}
|
||||
info!("------------------------");
|
||||
}
|
||||
|
||||
listeners.push(listener);
|
||||
},
|
||||
Err(e) => {
|
||||
error!("Failed to bind to {}: {}", addr, e);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Cleanup
|
||||
pool.close_all().await;
|
||||
if listeners.is_empty() {
|
||||
error!("No listeners. Exiting.");
|
||||
std::process::exit(1);
|
||||
}
|
||||
|
||||
// Switch to user-configured log level after startup
|
||||
let runtime_filter = if has_rust_log {
|
||||
EnvFilter::from_default_env()
|
||||
} else {
|
||||
EnvFilter::new(effective_log_level.to_filter_str())
|
||||
};
|
||||
filter_handle.reload(runtime_filter).expect("Failed to switch log filter");
|
||||
|
||||
for listener in listeners {
|
||||
let config = config.clone();
|
||||
let stats = stats.clone();
|
||||
let upstream_manager = upstream_manager.clone();
|
||||
let replay_checker = replay_checker.clone();
|
||||
let buffer_pool = buffer_pool.clone();
|
||||
let rng = rng.clone();
|
||||
|
||||
tokio::spawn(async move {
|
||||
loop {
|
||||
match listener.accept().await {
|
||||
Ok((stream, peer_addr)) => {
|
||||
let config = config.clone();
|
||||
let stats = stats.clone();
|
||||
let upstream_manager = upstream_manager.clone();
|
||||
let replay_checker = replay_checker.clone();
|
||||
let buffer_pool = buffer_pool.clone();
|
||||
let rng = rng.clone();
|
||||
|
||||
tokio::spawn(async move {
|
||||
if let Err(e) = ClientHandler::new(
|
||||
stream, peer_addr, config, stats,
|
||||
upstream_manager, replay_checker, buffer_pool, rng
|
||||
).run().await {
|
||||
debug!(peer = %peer_addr, error = %e, "Connection error");
|
||||
}
|
||||
});
|
||||
}
|
||||
Err(e) => {
|
||||
error!("Accept error: {}", e);
|
||||
tokio::time::sleep(Duration::from_millis(100)).await;
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
match signal::ctrl_c().await {
|
||||
Ok(()) => info!("Shutting down..."),
|
||||
Err(e) => error!("Signal error: {}", e),
|
||||
}
|
||||
|
||||
info!("Goodbye!");
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn print_proxy_links(config: &ProxyConfig) {
|
||||
println!("\n=== Proxy Links ===\n");
|
||||
|
||||
for (user, secret) in &config.users {
|
||||
if config.modes.tls {
|
||||
let tls_secret = format!(
|
||||
"ee{}{}",
|
||||
secret,
|
||||
hex::encode(config.tls_domain.as_bytes())
|
||||
);
|
||||
println!(
|
||||
"{} (TLS): tg://proxy?server=IP&port={}&secret={}",
|
||||
user, config.port, tls_secret
|
||||
);
|
||||
}
|
||||
|
||||
if config.modes.secure {
|
||||
println!(
|
||||
"{} (Secure): tg://proxy?server=IP&port={}&secret=dd{}",
|
||||
user, config.port, secret
|
||||
);
|
||||
}
|
||||
|
||||
if config.modes.classic {
|
||||
println!(
|
||||
"{} (Classic): tg://proxy?server=IP&port={}&secret={}",
|
||||
user, config.port, secret
|
||||
);
|
||||
}
|
||||
|
||||
println!();
|
||||
}
|
||||
|
||||
println!("===================\n");
|
||||
}
|
||||
@@ -1,13 +1,13 @@
|
||||
//! Protocol constants and datacenter addresses
|
||||
|
||||
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
|
||||
use once_cell::sync::Lazy;
|
||||
use std::sync::LazyLock;
|
||||
|
||||
// ============= Telegram Datacenters =============
|
||||
|
||||
pub const TG_DATACENTER_PORT: u16 = 443;
|
||||
|
||||
pub static TG_DATACENTERS_V4: Lazy<Vec<IpAddr>> = Lazy::new(|| {
|
||||
pub static TG_DATACENTERS_V4: LazyLock<Vec<IpAddr>> = LazyLock::new(|| {
|
||||
vec![
|
||||
IpAddr::V4(Ipv4Addr::new(149, 154, 175, 50)),
|
||||
IpAddr::V4(Ipv4Addr::new(149, 154, 167, 51)),
|
||||
@@ -17,7 +17,7 @@ pub static TG_DATACENTERS_V4: Lazy<Vec<IpAddr>> = Lazy::new(|| {
|
||||
]
|
||||
});
|
||||
|
||||
pub static TG_DATACENTERS_V6: Lazy<Vec<IpAddr>> = Lazy::new(|| {
|
||||
pub static TG_DATACENTERS_V6: LazyLock<Vec<IpAddr>> = LazyLock::new(|| {
|
||||
vec![
|
||||
IpAddr::V6("2001:b28:f23d:f001::a".parse().unwrap()),
|
||||
IpAddr::V6("2001:67c:04e8:f002::a".parse().unwrap()),
|
||||
@@ -29,8 +29,8 @@ pub static TG_DATACENTERS_V6: Lazy<Vec<IpAddr>> = Lazy::new(|| {
|
||||
|
||||
// ============= Middle Proxies (for advertising) =============
|
||||
|
||||
pub static TG_MIDDLE_PROXIES_V4: Lazy<std::collections::HashMap<i32, Vec<(IpAddr, u16)>>> =
|
||||
Lazy::new(|| {
|
||||
pub static TG_MIDDLE_PROXIES_V4: LazyLock<std::collections::HashMap<i32, Vec<(IpAddr, u16)>>> =
|
||||
LazyLock::new(|| {
|
||||
let mut m = std::collections::HashMap::new();
|
||||
m.insert(1, vec![(IpAddr::V4(Ipv4Addr::new(149, 154, 175, 50)), 8888)]);
|
||||
m.insert(-1, vec![(IpAddr::V4(Ipv4Addr::new(149, 154, 175, 50)), 8888)]);
|
||||
@@ -45,8 +45,8 @@ pub static TG_MIDDLE_PROXIES_V4: Lazy<std::collections::HashMap<i32, Vec<(IpAddr
|
||||
m
|
||||
});
|
||||
|
||||
pub static TG_MIDDLE_PROXIES_V6: Lazy<std::collections::HashMap<i32, Vec<(IpAddr, u16)>>> =
|
||||
Lazy::new(|| {
|
||||
pub static TG_MIDDLE_PROXIES_V6: LazyLock<std::collections::HashMap<i32, Vec<(IpAddr, u16)>>> =
|
||||
LazyLock::new(|| {
|
||||
let mut m = std::collections::HashMap::new();
|
||||
m.insert(1, vec![(IpAddr::V6("2001:b28:f23d:f001::d".parse().unwrap()), 8888)]);
|
||||
m.insert(-1, vec![(IpAddr::V6("2001:b28:f23d:f001::d".parse().unwrap()), 8888)]);
|
||||
@@ -167,7 +167,8 @@ pub const DEFAULT_ACK_TIMEOUT_SECS: u64 = 300;
|
||||
// ============= Buffer Sizes =============
|
||||
|
||||
/// Default buffer size
|
||||
pub const DEFAULT_BUFFER_SIZE: usize = 65536;
|
||||
pub const DEFAULT_BUFFER_SIZE: usize = 16384;
|
||||
|
||||
/// Small buffer size for bad client handling
|
||||
pub const SMALL_BUFFER_SIZE: usize = 8192;
|
||||
|
||||
|
||||
@@ -1,10 +1,13 @@
|
||||
//! MTProto Obfuscation
|
||||
|
||||
use zeroize::Zeroize;
|
||||
use crate::crypto::{sha256, AesCtr};
|
||||
use crate::error::Result;
|
||||
use super::constants::*;
|
||||
|
||||
/// Obfuscation parameters from handshake
|
||||
///
|
||||
/// Key material is zeroized on drop.
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct ObfuscationParams {
|
||||
/// Key for decrypting client -> proxy traffic
|
||||
@@ -21,25 +24,31 @@ pub struct ObfuscationParams {
|
||||
pub dc_idx: i16,
|
||||
}
|
||||
|
||||
impl Drop for ObfuscationParams {
|
||||
fn drop(&mut self) {
|
||||
self.decrypt_key.zeroize();
|
||||
self.decrypt_iv.zeroize();
|
||||
self.encrypt_key.zeroize();
|
||||
self.encrypt_iv.zeroize();
|
||||
}
|
||||
}
|
||||
|
||||
impl ObfuscationParams {
|
||||
/// Parse obfuscation parameters from handshake bytes
|
||||
/// Returns None if handshake doesn't match any user secret
|
||||
pub fn from_handshake(
|
||||
handshake: &[u8; HANDSHAKE_LEN],
|
||||
secrets: &[(String, Vec<u8>)], // (username, secret_bytes)
|
||||
secrets: &[(String, Vec<u8>)],
|
||||
) -> Option<(Self, String)> {
|
||||
// Extract prekey and IV for decryption
|
||||
let dec_prekey_iv = &handshake[SKIP_LEN..SKIP_LEN + PREKEY_LEN + IV_LEN];
|
||||
let dec_prekey = &dec_prekey_iv[..PREKEY_LEN];
|
||||
let dec_iv_bytes = &dec_prekey_iv[PREKEY_LEN..];
|
||||
|
||||
// Reversed for encryption direction
|
||||
let enc_prekey_iv: Vec<u8> = dec_prekey_iv.iter().rev().copied().collect();
|
||||
let enc_prekey = &enc_prekey_iv[..PREKEY_LEN];
|
||||
let enc_iv_bytes = &enc_prekey_iv[PREKEY_LEN..];
|
||||
|
||||
for (username, secret) in secrets {
|
||||
// Derive decryption key
|
||||
let mut dec_key_input = Vec::with_capacity(PREKEY_LEN + secret.len());
|
||||
dec_key_input.extend_from_slice(dec_prekey);
|
||||
dec_key_input.extend_from_slice(secret);
|
||||
@@ -47,26 +56,22 @@ impl ObfuscationParams {
|
||||
|
||||
let decrypt_iv = u128::from_be_bytes(dec_iv_bytes.try_into().unwrap());
|
||||
|
||||
// Create decryptor and decrypt handshake
|
||||
let mut decryptor = AesCtr::new(&decrypt_key, decrypt_iv);
|
||||
let decrypted = decryptor.decrypt(handshake);
|
||||
|
||||
// Check protocol tag
|
||||
let tag_bytes: [u8; 4] = decrypted[PROTO_TAG_POS..PROTO_TAG_POS + 4]
|
||||
.try_into()
|
||||
.unwrap();
|
||||
|
||||
let proto_tag = match ProtoTag::from_bytes(tag_bytes) {
|
||||
Some(tag) => tag,
|
||||
None => continue, // Try next secret
|
||||
None => continue,
|
||||
};
|
||||
|
||||
// Extract DC index
|
||||
let dc_idx = i16::from_le_bytes(
|
||||
decrypted[DC_IDX_POS..DC_IDX_POS + 2].try_into().unwrap()
|
||||
);
|
||||
|
||||
// Derive encryption key
|
||||
let mut enc_key_input = Vec::with_capacity(PREKEY_LEN + secret.len());
|
||||
enc_key_input.extend_from_slice(enc_prekey);
|
||||
enc_key_input.extend_from_slice(secret);
|
||||
@@ -123,18 +128,15 @@ pub fn generate_nonce<R: FnMut(usize) -> Vec<u8>>(mut random_bytes: R) -> [u8; H
|
||||
|
||||
/// Check if nonce is valid (not matching reserved patterns)
|
||||
pub fn is_valid_nonce(nonce: &[u8; HANDSHAKE_LEN]) -> bool {
|
||||
// Check first byte
|
||||
if RESERVED_NONCE_FIRST_BYTES.contains(&nonce[0]) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Check first 4 bytes
|
||||
let first_four: [u8; 4] = nonce[..4].try_into().unwrap();
|
||||
if RESERVED_NONCE_BEGINNINGS.contains(&first_four) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Check bytes 4-7
|
||||
let continue_four: [u8; 4] = nonce[4..8].try_into().unwrap();
|
||||
if RESERVED_NONCE_CONTINUES.contains(&continue_four) {
|
||||
return false;
|
||||
@@ -147,12 +149,10 @@ pub fn is_valid_nonce(nonce: &[u8; HANDSHAKE_LEN]) -> bool {
|
||||
pub fn prepare_tg_nonce(
|
||||
nonce: &mut [u8; HANDSHAKE_LEN],
|
||||
proto_tag: ProtoTag,
|
||||
enc_key_iv: Option<&[u8]>, // For fast mode
|
||||
enc_key_iv: Option<&[u8]>,
|
||||
) {
|
||||
// Set protocol tag
|
||||
nonce[PROTO_TAG_POS..PROTO_TAG_POS + 4].copy_from_slice(&proto_tag.to_bytes());
|
||||
|
||||
// For fast mode, copy the reversed enc_key_iv
|
||||
if let Some(key_iv) = enc_key_iv {
|
||||
let reversed: Vec<u8> = key_iv.iter().rev().copied().collect();
|
||||
nonce[SKIP_LEN..SKIP_LEN + KEY_LEN + IV_LEN].copy_from_slice(&reversed);
|
||||
@@ -161,14 +161,12 @@ pub fn prepare_tg_nonce(
|
||||
|
||||
/// Encrypt the outgoing nonce for Telegram
|
||||
pub fn encrypt_nonce(nonce: &[u8; HANDSHAKE_LEN]) -> Vec<u8> {
|
||||
// Derive encryption key from the nonce itself
|
||||
let key_iv = &nonce[SKIP_LEN..SKIP_LEN + KEY_LEN + IV_LEN];
|
||||
let enc_key = sha256(key_iv);
|
||||
let enc_iv = u128::from_be_bytes(key_iv[..IV_LEN].try_into().unwrap());
|
||||
|
||||
let mut encryptor = AesCtr::new(&enc_key, enc_iv);
|
||||
|
||||
// Only encrypt from PROTO_TAG_POS onwards
|
||||
let mut result = nonce.to_vec();
|
||||
let encrypted_part = encryptor.encrypt(&nonce[PROTO_TAG_POS..]);
|
||||
result[PROTO_TAG_POS..].copy_from_slice(&encrypted_part);
|
||||
@@ -182,22 +180,18 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_is_valid_nonce() {
|
||||
// Valid nonce
|
||||
let mut valid = [0x42u8; HANDSHAKE_LEN];
|
||||
valid[4..8].copy_from_slice(&[1, 2, 3, 4]);
|
||||
assert!(is_valid_nonce(&valid));
|
||||
|
||||
// Invalid: starts with 0xef
|
||||
let mut invalid = [0x00u8; HANDSHAKE_LEN];
|
||||
invalid[0] = 0xef;
|
||||
assert!(!is_valid_nonce(&invalid));
|
||||
|
||||
// Invalid: starts with HEAD
|
||||
let mut invalid = [0x00u8; HANDSHAKE_LEN];
|
||||
invalid[..4].copy_from_slice(b"HEAD");
|
||||
assert!(!is_valid_nonce(&invalid));
|
||||
|
||||
// Invalid: bytes 4-7 are zeros
|
||||
let mut invalid = [0x42u8; HANDSHAKE_LEN];
|
||||
invalid[4..8].copy_from_slice(&[0, 0, 0, 0]);
|
||||
assert!(!is_valid_nonce(&invalid));
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
//! for domain fronting. The handshake looks like valid TLS 1.3 but
|
||||
//! actually carries MTProto authentication data.
|
||||
|
||||
use crate::crypto::{sha256_hmac, random::SECURE_RANDOM};
|
||||
use crate::crypto::{sha256_hmac, SecureRandom};
|
||||
use crate::error::{ProxyError, Result};
|
||||
use super::constants::*;
|
||||
use std::time::{SystemTime, UNIX_EPOCH};
|
||||
@@ -315,8 +315,8 @@ pub fn validate_tls_handshake(
|
||||
///
|
||||
/// This generates random bytes that look like a valid X25519 public key.
|
||||
/// Since we're not doing real TLS, the actual cryptographic properties don't matter.
|
||||
pub fn gen_fake_x25519_key() -> [u8; 32] {
|
||||
let bytes = SECURE_RANDOM.bytes(32);
|
||||
pub fn gen_fake_x25519_key(rng: &SecureRandom) -> [u8; 32] {
|
||||
let bytes = rng.bytes(32);
|
||||
bytes.try_into().unwrap()
|
||||
}
|
||||
|
||||
@@ -333,8 +333,9 @@ pub fn build_server_hello(
|
||||
client_digest: &[u8; TLS_DIGEST_LEN],
|
||||
session_id: &[u8],
|
||||
fake_cert_len: usize,
|
||||
rng: &SecureRandom,
|
||||
) -> Vec<u8> {
|
||||
let x25519_key = gen_fake_x25519_key();
|
||||
let x25519_key = gen_fake_x25519_key(rng);
|
||||
|
||||
// Build ServerHello
|
||||
let server_hello = ServerHelloBuilder::new(session_id.to_vec())
|
||||
@@ -351,7 +352,7 @@ pub fn build_server_hello(
|
||||
];
|
||||
|
||||
// Build fake certificate (Application Data record)
|
||||
let fake_cert = SECURE_RANDOM.bytes(fake_cert_len);
|
||||
let fake_cert = rng.bytes(fake_cert_len);
|
||||
let mut app_data_record = Vec::with_capacity(5 + fake_cert_len);
|
||||
app_data_record.push(TLS_RECORD_APPLICATION);
|
||||
app_data_record.extend_from_slice(&TLS_VERSION);
|
||||
@@ -489,8 +490,9 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_gen_fake_x25519_key() {
|
||||
let key1 = gen_fake_x25519_key();
|
||||
let key2 = gen_fake_x25519_key();
|
||||
let rng = SecureRandom::new();
|
||||
let key1 = gen_fake_x25519_key(&rng);
|
||||
let key2 = gen_fake_x25519_key(&rng);
|
||||
|
||||
assert_eq!(key1.len(), 32);
|
||||
assert_eq!(key2.len(), 32);
|
||||
@@ -545,7 +547,8 @@ mod tests {
|
||||
let client_digest = [0x42u8; 32];
|
||||
let session_id = vec![0xAA; 32];
|
||||
|
||||
let response = build_server_hello(secret, &client_digest, &session_id, 2048);
|
||||
let rng = SecureRandom::new();
|
||||
let response = build_server_hello(secret, &client_digest, &session_id, 2048, &rng);
|
||||
|
||||
// Should have at least 3 records
|
||||
assert!(response.len() > 100);
|
||||
@@ -577,8 +580,9 @@ mod tests {
|
||||
let client_digest = [0x42u8; 32];
|
||||
let session_id = vec![0xAA; 32];
|
||||
|
||||
let response1 = build_server_hello(secret, &client_digest, &session_id, 1024);
|
||||
let response2 = build_server_hello(secret, &client_digest, &session_id, 1024);
|
||||
let rng = SecureRandom::new();
|
||||
let response1 = build_server_hello(secret, &client_digest, &session_id, 1024, &rng);
|
||||
let response2 = build_server_hello(secret, &client_digest, &session_id, 1024, &rng);
|
||||
|
||||
// Digest position should have non-zero data
|
||||
let digest1 = &response1[TLS_DIGEST_POS..TLS_DIGEST_POS + TLS_DIGEST_LEN];
|
||||
|
||||
@@ -13,103 +13,104 @@ use crate::error::{ProxyError, Result, HandshakeResult};
|
||||
use crate::protocol::constants::*;
|
||||
use crate::protocol::tls;
|
||||
use crate::stats::{Stats, ReplayChecker};
|
||||
use crate::transport::{ConnectionPool, configure_client_socket};
|
||||
use crate::stream::{CryptoReader, CryptoWriter, FakeTlsReader, FakeTlsWriter};
|
||||
use crate::crypto::AesCtr;
|
||||
use crate::transport::{configure_client_socket, UpstreamManager};
|
||||
use crate::stream::{CryptoReader, CryptoWriter, FakeTlsReader, FakeTlsWriter, BufferPool};
|
||||
use crate::crypto::{AesCtr, SecureRandom};
|
||||
|
||||
use super::handshake::{
|
||||
use crate::proxy::handshake::{
|
||||
handle_tls_handshake, handle_mtproto_handshake,
|
||||
HandshakeSuccess, generate_tg_nonce, encrypt_tg_nonce,
|
||||
};
|
||||
use super::relay::relay_bidirectional;
|
||||
use super::masking::handle_bad_client;
|
||||
use crate::proxy::relay::relay_bidirectional;
|
||||
use crate::proxy::masking::handle_bad_client;
|
||||
|
||||
/// Client connection handler
|
||||
pub struct ClientHandler {
|
||||
pub struct ClientHandler;
|
||||
|
||||
pub struct RunningClientHandler {
|
||||
stream: TcpStream,
|
||||
peer: SocketAddr,
|
||||
config: Arc<ProxyConfig>,
|
||||
stats: Arc<Stats>,
|
||||
replay_checker: Arc<ReplayChecker>,
|
||||
pool: Arc<ConnectionPool>,
|
||||
upstream_manager: Arc<UpstreamManager>,
|
||||
buffer_pool: Arc<BufferPool>,
|
||||
rng: Arc<SecureRandom>,
|
||||
}
|
||||
|
||||
impl ClientHandler {
|
||||
/// Create new client handler
|
||||
pub fn new(
|
||||
stream: TcpStream,
|
||||
peer: SocketAddr,
|
||||
config: Arc<ProxyConfig>,
|
||||
stats: Arc<Stats>,
|
||||
upstream_manager: Arc<UpstreamManager>,
|
||||
replay_checker: Arc<ReplayChecker>,
|
||||
pool: Arc<ConnectionPool>,
|
||||
) -> Self {
|
||||
Self {
|
||||
config,
|
||||
stats,
|
||||
replay_checker,
|
||||
pool,
|
||||
buffer_pool: Arc<BufferPool>,
|
||||
rng: Arc<SecureRandom>,
|
||||
) -> RunningClientHandler {
|
||||
RunningClientHandler {
|
||||
stream, peer, config, stats, replay_checker,
|
||||
upstream_manager, buffer_pool, rng,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Handle a client connection
|
||||
pub async fn handle(&self, stream: TcpStream, peer: SocketAddr) {
|
||||
impl RunningClientHandler {
|
||||
pub async fn run(mut self) -> Result<()> {
|
||||
self.stats.increment_connects_all();
|
||||
|
||||
let peer = self.peer;
|
||||
debug!(peer = %peer, "New connection");
|
||||
|
||||
// Configure socket
|
||||
if let Err(e) = configure_client_socket(
|
||||
&stream,
|
||||
self.config.client_keepalive,
|
||||
self.config.client_ack_timeout,
|
||||
&self.stream,
|
||||
self.config.timeouts.client_keepalive,
|
||||
self.config.timeouts.client_ack,
|
||||
) {
|
||||
debug!(peer = %peer, error = %e, "Failed to configure client socket");
|
||||
}
|
||||
|
||||
// Perform handshake with timeout
|
||||
let handshake_timeout = Duration::from_secs(self.config.client_handshake_timeout);
|
||||
let handshake_timeout = Duration::from_secs(self.config.timeouts.client_handshake);
|
||||
let stats = self.stats.clone();
|
||||
|
||||
let result = timeout(
|
||||
handshake_timeout,
|
||||
self.do_handshake(stream, peer)
|
||||
).await;
|
||||
let result = timeout(handshake_timeout, self.do_handshake()).await;
|
||||
|
||||
match result {
|
||||
Ok(Ok(())) => {
|
||||
debug!(peer = %peer, "Connection handled successfully");
|
||||
Ok(())
|
||||
}
|
||||
Ok(Err(e)) => {
|
||||
debug!(peer = %peer, error = %e, "Handshake failed");
|
||||
Err(e)
|
||||
}
|
||||
Err(_) => {
|
||||
self.stats.increment_handshake_timeouts();
|
||||
stats.increment_handshake_timeouts();
|
||||
debug!(peer = %peer, "Handshake timeout");
|
||||
Err(ProxyError::TgHandshakeTimeout)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Perform handshake and relay
|
||||
async fn do_handshake(&self, mut stream: TcpStream, peer: SocketAddr) -> Result<()> {
|
||||
// Read first bytes to determine handshake type
|
||||
async fn do_handshake(mut self) -> Result<()> {
|
||||
let mut first_bytes = [0u8; 5];
|
||||
stream.read_exact(&mut first_bytes).await?;
|
||||
self.stream.read_exact(&mut first_bytes).await?;
|
||||
|
||||
let is_tls = tls::is_tls_handshake(&first_bytes[..3]);
|
||||
let peer = self.peer;
|
||||
|
||||
debug!(peer = %peer, is_tls = is_tls, first_bytes = %hex::encode(&first_bytes), "Handshake type detected");
|
||||
debug!(peer = %peer, is_tls = is_tls, "Handshake type detected");
|
||||
|
||||
if is_tls {
|
||||
self.handle_tls_client(stream, peer, first_bytes).await
|
||||
self.handle_tls_client(first_bytes).await
|
||||
} else {
|
||||
self.handle_direct_client(stream, peer, first_bytes).await
|
||||
self.handle_direct_client(first_bytes).await
|
||||
}
|
||||
}
|
||||
|
||||
/// Handle TLS-wrapped client
|
||||
async fn handle_tls_client(
|
||||
&self,
|
||||
mut stream: TcpStream,
|
||||
peer: SocketAddr,
|
||||
first_bytes: [u8; 5],
|
||||
) -> Result<()> {
|
||||
// Read TLS handshake length
|
||||
async fn handle_tls_client(mut self, first_bytes: [u8; 5]) -> Result<()> {
|
||||
let peer = self.peer;
|
||||
|
||||
let tls_len = u16::from_be_bytes([first_bytes[3], first_bytes[4]]) as usize;
|
||||
|
||||
debug!(peer = %peer, tls_len = tls_len, "Reading TLS handshake");
|
||||
@@ -117,113 +118,111 @@ impl ClientHandler {
|
||||
if tls_len < 512 {
|
||||
debug!(peer = %peer, tls_len = tls_len, "TLS handshake too short");
|
||||
self.stats.increment_connects_bad();
|
||||
handle_bad_client(stream, &first_bytes, &self.config).await;
|
||||
let (reader, writer) = self.stream.into_split();
|
||||
handle_bad_client(reader, writer, &first_bytes, &self.config).await;
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
// Read full TLS handshake
|
||||
let mut handshake = vec![0u8; 5 + tls_len];
|
||||
handshake[..5].copy_from_slice(&first_bytes);
|
||||
stream.read_exact(&mut handshake[5..]).await?;
|
||||
self.stream.read_exact(&mut handshake[5..]).await?;
|
||||
|
||||
// Split stream for reading/writing
|
||||
let (read_half, write_half) = stream.into_split();
|
||||
let config = self.config.clone();
|
||||
let replay_checker = self.replay_checker.clone();
|
||||
let stats = self.stats.clone();
|
||||
let buffer_pool = self.buffer_pool.clone();
|
||||
|
||||
let (read_half, write_half) = self.stream.into_split();
|
||||
|
||||
// Handle TLS handshake
|
||||
let (mut tls_reader, tls_writer, _tls_user) = match handle_tls_handshake(
|
||||
&handshake,
|
||||
read_half,
|
||||
write_half,
|
||||
peer,
|
||||
&self.config,
|
||||
&self.replay_checker,
|
||||
&handshake, read_half, write_half, peer,
|
||||
&config, &replay_checker, &self.rng,
|
||||
).await {
|
||||
HandshakeResult::Success(result) => result,
|
||||
HandshakeResult::BadClient => {
|
||||
self.stats.increment_connects_bad();
|
||||
HandshakeResult::BadClient { reader, writer } => {
|
||||
stats.increment_connects_bad();
|
||||
handle_bad_client(reader, writer, &handshake, &config).await;
|
||||
return Ok(());
|
||||
}
|
||||
HandshakeResult::Error(e) => return Err(e),
|
||||
};
|
||||
|
||||
// Read MTProto handshake through TLS
|
||||
debug!(peer = %peer, "Reading MTProto handshake through TLS");
|
||||
let mtproto_data = tls_reader.read_exact(HANDSHAKE_LEN).await?;
|
||||
let mtproto_handshake: [u8; HANDSHAKE_LEN] = mtproto_data[..].try_into()
|
||||
.map_err(|_| ProxyError::InvalidHandshake("Short MTProto handshake".into()))?;
|
||||
|
||||
// Handle MTProto handshake
|
||||
let (crypto_reader, crypto_writer, success) = match handle_mtproto_handshake(
|
||||
&mtproto_handshake,
|
||||
tls_reader,
|
||||
tls_writer,
|
||||
peer,
|
||||
&self.config,
|
||||
&self.replay_checker,
|
||||
true,
|
||||
&mtproto_handshake, tls_reader, tls_writer, peer,
|
||||
&config, &replay_checker, true,
|
||||
).await {
|
||||
HandshakeResult::Success(result) => result,
|
||||
HandshakeResult::BadClient => {
|
||||
self.stats.increment_connects_bad();
|
||||
HandshakeResult::BadClient { reader: _, writer: _ } => {
|
||||
stats.increment_connects_bad();
|
||||
debug!(peer = %peer, "Valid TLS but invalid MTProto handshake");
|
||||
return Ok(());
|
||||
}
|
||||
HandshakeResult::Error(e) => return Err(e),
|
||||
};
|
||||
|
||||
// Handle authenticated client
|
||||
self.handle_authenticated_inner(crypto_reader, crypto_writer, success).await
|
||||
Self::handle_authenticated_static(
|
||||
crypto_reader, crypto_writer, success,
|
||||
self.upstream_manager, self.stats, self.config,
|
||||
buffer_pool, self.rng,
|
||||
).await
|
||||
}
|
||||
|
||||
/// Handle direct (non-TLS) client
|
||||
async fn handle_direct_client(
|
||||
&self,
|
||||
mut stream: TcpStream,
|
||||
peer: SocketAddr,
|
||||
first_bytes: [u8; 5],
|
||||
) -> Result<()> {
|
||||
// Check if non-TLS modes are enabled
|
||||
if !self.config.modes.classic && !self.config.modes.secure {
|
||||
async fn handle_direct_client(mut self, first_bytes: [u8; 5]) -> Result<()> {
|
||||
let peer = self.peer;
|
||||
|
||||
if !self.config.general.modes.classic && !self.config.general.modes.secure {
|
||||
debug!(peer = %peer, "Non-TLS modes disabled");
|
||||
self.stats.increment_connects_bad();
|
||||
handle_bad_client(stream, &first_bytes, &self.config).await;
|
||||
let (reader, writer) = self.stream.into_split();
|
||||
handle_bad_client(reader, writer, &first_bytes, &self.config).await;
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
// Read rest of handshake
|
||||
let mut handshake = [0u8; HANDSHAKE_LEN];
|
||||
handshake[..5].copy_from_slice(&first_bytes);
|
||||
stream.read_exact(&mut handshake[5..]).await?;
|
||||
self.stream.read_exact(&mut handshake[5..]).await?;
|
||||
|
||||
// Split stream
|
||||
let (read_half, write_half) = stream.into_split();
|
||||
let config = self.config.clone();
|
||||
let replay_checker = self.replay_checker.clone();
|
||||
let stats = self.stats.clone();
|
||||
let buffer_pool = self.buffer_pool.clone();
|
||||
|
||||
let (read_half, write_half) = self.stream.into_split();
|
||||
|
||||
// Handle MTProto handshake
|
||||
let (crypto_reader, crypto_writer, success) = match handle_mtproto_handshake(
|
||||
&handshake,
|
||||
read_half,
|
||||
write_half,
|
||||
peer,
|
||||
&self.config,
|
||||
&self.replay_checker,
|
||||
false,
|
||||
&handshake, read_half, write_half, peer,
|
||||
&config, &replay_checker, false,
|
||||
).await {
|
||||
HandshakeResult::Success(result) => result,
|
||||
HandshakeResult::BadClient => {
|
||||
self.stats.increment_connects_bad();
|
||||
HandshakeResult::BadClient { reader, writer } => {
|
||||
stats.increment_connects_bad();
|
||||
handle_bad_client(reader, writer, &handshake, &config).await;
|
||||
return Ok(());
|
||||
}
|
||||
HandshakeResult::Error(e) => return Err(e),
|
||||
};
|
||||
|
||||
self.handle_authenticated_inner(crypto_reader, crypto_writer, success).await
|
||||
Self::handle_authenticated_static(
|
||||
crypto_reader, crypto_writer, success,
|
||||
self.upstream_manager, self.stats, self.config,
|
||||
buffer_pool, self.rng,
|
||||
).await
|
||||
}
|
||||
|
||||
/// Handle authenticated client - connect to Telegram and relay
|
||||
async fn handle_authenticated_inner<R, W>(
|
||||
&self,
|
||||
async fn handle_authenticated_static<R, W>(
|
||||
client_reader: CryptoReader<R>,
|
||||
client_writer: CryptoWriter<W>,
|
||||
success: HandshakeSuccess,
|
||||
upstream_manager: Arc<UpstreamManager>,
|
||||
stats: Arc<Stats>,
|
||||
config: Arc<ProxyConfig>,
|
||||
buffer_pool: Arc<BufferPool>,
|
||||
rng: Arc<SecureRandom>,
|
||||
) -> Result<()>
|
||||
where
|
||||
R: AsyncRead + Unpin + Send + 'static,
|
||||
@@ -231,14 +230,12 @@ impl ClientHandler {
|
||||
{
|
||||
let user = &success.user;
|
||||
|
||||
// Check user limits
|
||||
if let Err(e) = self.check_user_limits(user) {
|
||||
if let Err(e) = Self::check_user_limits_static(user, &config, &stats) {
|
||||
warn!(user = %user, error = %e, "User limit exceeded");
|
||||
return Err(e);
|
||||
}
|
||||
|
||||
// Get datacenter address
|
||||
let dc_addr = self.get_dc_addr(success.dc_idx)?;
|
||||
let dc_addr = Self::get_dc_addr_static(success.dc_idx, &config)?;
|
||||
|
||||
info!(
|
||||
user = %user,
|
||||
@@ -246,69 +243,54 @@ impl ClientHandler {
|
||||
dc = success.dc_idx,
|
||||
dc_addr = %dc_addr,
|
||||
proto = ?success.proto_tag,
|
||||
fast_mode = self.config.fast_mode,
|
||||
"Connecting to Telegram"
|
||||
);
|
||||
|
||||
// Connect to Telegram
|
||||
let tg_stream = self.pool.get(dc_addr).await?;
|
||||
// Pass dc_idx for latency-based upstream selection
|
||||
let tg_stream = upstream_manager.connect(dc_addr, Some(success.dc_idx)).await?;
|
||||
|
||||
debug!(peer = %success.peer, dc_addr = %dc_addr, "Connected to Telegram, performing handshake");
|
||||
debug!(peer = %success.peer, dc_addr = %dc_addr, "Connected, performing TG handshake");
|
||||
|
||||
// Perform Telegram handshake and get crypto streams
|
||||
let (tg_reader, tg_writer) = self.do_tg_handshake(
|
||||
tg_stream,
|
||||
&success,
|
||||
let (tg_reader, tg_writer) = Self::do_tg_handshake_static(
|
||||
tg_stream, &success, &config, rng.as_ref(),
|
||||
).await?;
|
||||
|
||||
debug!(peer = %success.peer, "Telegram handshake complete, starting relay");
|
||||
debug!(peer = %success.peer, "TG handshake complete, starting relay");
|
||||
|
||||
// Update stats
|
||||
self.stats.increment_user_connects(user);
|
||||
self.stats.increment_user_curr_connects(user);
|
||||
stats.increment_user_connects(user);
|
||||
stats.increment_user_curr_connects(user);
|
||||
|
||||
// Relay traffic - передаём Arc::clone(&self.stats)
|
||||
let relay_result = relay_bidirectional(
|
||||
client_reader,
|
||||
client_writer,
|
||||
tg_reader,
|
||||
tg_writer,
|
||||
user,
|
||||
Arc::clone(&self.stats),
|
||||
client_reader, client_writer,
|
||||
tg_reader, tg_writer,
|
||||
user, Arc::clone(&stats), buffer_pool,
|
||||
).await;
|
||||
|
||||
// Update stats
|
||||
self.stats.decrement_user_curr_connects(user);
|
||||
stats.decrement_user_curr_connects(user);
|
||||
|
||||
match &relay_result {
|
||||
Ok(()) => debug!(user = %user, peer = %success.peer, "Relay completed normally"),
|
||||
Err(e) => debug!(user = %user, peer = %success.peer, error = %e, "Relay ended with error"),
|
||||
Ok(()) => debug!(user = %user, "Relay completed"),
|
||||
Err(e) => debug!(user = %user, error = %e, "Relay ended with error"),
|
||||
}
|
||||
|
||||
relay_result
|
||||
}
|
||||
|
||||
/// Check user limits (expiration, connection count, data quota)
|
||||
fn check_user_limits(&self, user: &str) -> Result<()> {
|
||||
// Check expiration
|
||||
if let Some(expiration) = self.config.user_expirations.get(user) {
|
||||
fn check_user_limits_static(user: &str, config: &ProxyConfig, stats: &Stats) -> Result<()> {
|
||||
if let Some(expiration) = config.access.user_expirations.get(user) {
|
||||
if chrono::Utc::now() > *expiration {
|
||||
return Err(ProxyError::UserExpired { user: user.to_string() });
|
||||
}
|
||||
}
|
||||
|
||||
// Check connection limit
|
||||
if let Some(limit) = self.config.user_max_tcp_conns.get(user) {
|
||||
let current = self.stats.get_user_curr_connects(user);
|
||||
if current >= *limit as u64 {
|
||||
if let Some(limit) = config.access.user_max_tcp_conns.get(user) {
|
||||
if stats.get_user_curr_connects(user) >= *limit as u64 {
|
||||
return Err(ProxyError::ConnectionLimitExceeded { user: user.to_string() });
|
||||
}
|
||||
}
|
||||
|
||||
// Check data quota
|
||||
if let Some(quota) = self.config.user_data_quota.get(user) {
|
||||
let used = self.stats.get_user_total_octets(user);
|
||||
if used >= *quota {
|
||||
if let Some(quota) = config.access.user_data_quota.get(user) {
|
||||
if stats.get_user_total_octets(user) >= *quota {
|
||||
return Err(ProxyError::DataQuotaExceeded { user: user.to_string() });
|
||||
}
|
||||
}
|
||||
@@ -316,63 +298,105 @@ impl ClientHandler {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Get datacenter address by index
|
||||
fn get_dc_addr(&self, dc_idx: i16) -> Result<SocketAddr> {
|
||||
let idx = (dc_idx.abs() - 1) as usize;
|
||||
|
||||
let datacenters = if self.config.prefer_ipv6 {
|
||||
/// Resolve DC index to a target address.
|
||||
///
|
||||
/// Matches the C implementation's behavior exactly:
|
||||
///
|
||||
/// 1. Look up DC in known clusters (standard DCs ±1..±5)
|
||||
/// 2. If not found and `force=1` → fall back to `default_cluster`
|
||||
///
|
||||
/// In the C code:
|
||||
/// - `proxy-multi.conf` is downloaded from Telegram, contains only DC ±1..±5
|
||||
/// - `default 2;` directive sets the default cluster
|
||||
/// - `mf_cluster_lookup(CurConf, target_dc, 1)` returns default_cluster
|
||||
/// for any unknown DC (like CDN DC 203)
|
||||
///
|
||||
/// So DC 203, DC 101, DC -300, etc. all route to the default DC (2).
|
||||
/// There is NO modular arithmetic in the C implementation.
|
||||
fn get_dc_addr_static(dc_idx: i16, config: &ProxyConfig) -> Result<SocketAddr> {
|
||||
let datacenters = if config.general.prefer_ipv6 {
|
||||
&*TG_DATACENTERS_V6
|
||||
} else {
|
||||
&*TG_DATACENTERS_V4
|
||||
};
|
||||
|
||||
datacenters.get(idx)
|
||||
.map(|ip| SocketAddr::new(*ip, TG_DATACENTER_PORT))
|
||||
.ok_or_else(|| ProxyError::InvalidHandshake(
|
||||
format!("Invalid DC index: {}", dc_idx)
|
||||
))
|
||||
let num_dcs = datacenters.len(); // 5
|
||||
|
||||
// === Step 1: Check dc_overrides (like C's `proxy_for <dc> <ip>:<port>`) ===
|
||||
let dc_key = dc_idx.to_string();
|
||||
if let Some(addr_str) = config.dc_overrides.get(&dc_key) {
|
||||
match addr_str.parse::<SocketAddr>() {
|
||||
Ok(addr) => {
|
||||
debug!(dc_idx = dc_idx, addr = %addr, "Using DC override from config");
|
||||
return Ok(addr);
|
||||
}
|
||||
Err(_) => {
|
||||
warn!(dc_idx = dc_idx, addr_str = %addr_str,
|
||||
"Invalid DC override address in config, ignoring");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Perform handshake with Telegram server
|
||||
/// Returns crypto reader and writer for TG connection
|
||||
async fn do_tg_handshake(
|
||||
&self,
|
||||
mut stream: TcpStream,
|
||||
success: &HandshakeSuccess,
|
||||
) -> Result<(CryptoReader<tokio::net::tcp::OwnedReadHalf>, CryptoWriter<tokio::net::tcp::OwnedWriteHalf>)> {
|
||||
// Generate nonce with keys for TG
|
||||
let (nonce, tg_enc_key, tg_enc_iv, tg_dec_key, tg_dec_iv) = generate_tg_nonce(
|
||||
success.proto_tag,
|
||||
&success.dec_key, // Client's dec key
|
||||
success.dec_iv,
|
||||
self.config.fast_mode,
|
||||
// === Step 2: Standard DCs ±1..±5 — direct lookup ===
|
||||
let abs_dc = dc_idx.unsigned_abs() as usize;
|
||||
if abs_dc >= 1 && abs_dc <= num_dcs {
|
||||
return Ok(SocketAddr::new(datacenters[abs_dc - 1], TG_DATACENTER_PORT));
|
||||
}
|
||||
|
||||
// === Step 3: Unknown DC — fall back to default_cluster ===
|
||||
// Exactly like C's `mf_cluster_lookup(CurConf, target_dc, force=1)`
|
||||
// which returns `MC->default_cluster` when the DC is not found.
|
||||
// Telegram's proxy-multi.conf uses `default 2;`
|
||||
let default_dc = config.default_dc.unwrap_or(2) as usize;
|
||||
let fallback_idx = if default_dc >= 1 && default_dc <= num_dcs {
|
||||
default_dc - 1
|
||||
} else {
|
||||
1 // DC 2 (index 1) — matches Telegram's `default 2;`
|
||||
};
|
||||
|
||||
info!(
|
||||
original_dc = dc_idx,
|
||||
fallback_dc = (fallback_idx + 1) as u16,
|
||||
fallback_addr = %datacenters[fallback_idx],
|
||||
"Special DC ---> default_cluster"
|
||||
);
|
||||
|
||||
Ok(SocketAddr::new(datacenters[fallback_idx], TG_DATACENTER_PORT))
|
||||
}
|
||||
|
||||
async fn do_tg_handshake_static(
|
||||
mut stream: TcpStream,
|
||||
success: &HandshakeSuccess,
|
||||
config: &ProxyConfig,
|
||||
rng: &SecureRandom,
|
||||
) -> Result<(CryptoReader<tokio::net::tcp::OwnedReadHalf>, CryptoWriter<tokio::net::tcp::OwnedWriteHalf>)> {
|
||||
let (nonce, tg_enc_key, tg_enc_iv, tg_dec_key, tg_dec_iv) = generate_tg_nonce(
|
||||
success.proto_tag,
|
||||
&success.dec_key,
|
||||
success.dec_iv,
|
||||
rng,
|
||||
config.general.fast_mode,
|
||||
);
|
||||
|
||||
// Encrypt nonce
|
||||
let encrypted_nonce = encrypt_tg_nonce(&nonce);
|
||||
|
||||
debug!(
|
||||
peer = %success.peer,
|
||||
nonce_head = %hex::encode(&nonce[..16]),
|
||||
encrypted_head = %hex::encode(&encrypted_nonce[..16]),
|
||||
"Sending nonce to Telegram"
|
||||
);
|
||||
|
||||
// Send to Telegram
|
||||
stream.write_all(&encrypted_nonce).await?;
|
||||
stream.flush().await?;
|
||||
|
||||
debug!(peer = %success.peer, "Nonce sent to Telegram");
|
||||
|
||||
// Split stream and wrap with crypto
|
||||
let (read_half, write_half) = stream.into_split();
|
||||
|
||||
let decryptor = AesCtr::new(&tg_dec_key, tg_dec_iv);
|
||||
let encryptor = AesCtr::new(&tg_enc_key, tg_enc_iv);
|
||||
|
||||
let tg_reader = CryptoReader::new(read_half, decryptor);
|
||||
let tg_writer = CryptoWriter::new(write_half, encryptor);
|
||||
|
||||
Ok((tg_reader, tg_writer))
|
||||
Ok((
|
||||
CryptoReader::new(read_half, decryptor),
|
||||
CryptoWriter::new(write_half, encryptor),
|
||||
))
|
||||
}
|
||||
}
|
||||
@@ -1,11 +1,11 @@
|
||||
//! MTProto Handshake Magics
|
||||
//! MTProto Handshake
|
||||
|
||||
use std::net::SocketAddr;
|
||||
use tokio::io::{AsyncRead, AsyncWrite, AsyncWriteExt};
|
||||
use tracing::{debug, warn, trace, info};
|
||||
use zeroize::Zeroize;
|
||||
|
||||
use crate::crypto::{sha256, AesCtr};
|
||||
use crate::crypto::random::SECURE_RANDOM;
|
||||
use crate::crypto::{sha256, AesCtr, SecureRandom};
|
||||
use crate::protocol::constants::*;
|
||||
use crate::protocol::tls;
|
||||
use crate::stream::{FakeTlsReader, FakeTlsWriter, CryptoReader, CryptoWriter};
|
||||
@@ -14,6 +14,9 @@ use crate::stats::ReplayChecker;
|
||||
use crate::config::ProxyConfig;
|
||||
|
||||
/// Result of successful handshake
|
||||
///
|
||||
/// Key material (`dec_key`, `dec_iv`, `enc_key`, `enc_iv`) is
|
||||
/// zeroized on drop.
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct HandshakeSuccess {
|
||||
/// Authenticated user name
|
||||
@@ -34,6 +37,15 @@ pub struct HandshakeSuccess {
|
||||
pub is_tls: bool,
|
||||
}
|
||||
|
||||
impl Drop for HandshakeSuccess {
|
||||
fn drop(&mut self) {
|
||||
self.dec_key.zeroize();
|
||||
self.dec_iv.zeroize();
|
||||
self.enc_key.zeroize();
|
||||
self.enc_iv.zeroize();
|
||||
}
|
||||
}
|
||||
|
||||
/// Handle fake TLS handshake
|
||||
pub async fn handle_tls_handshake<R, W>(
|
||||
handshake: &[u8],
|
||||
@@ -42,76 +54,74 @@ pub async fn handle_tls_handshake<R, W>(
|
||||
peer: SocketAddr,
|
||||
config: &ProxyConfig,
|
||||
replay_checker: &ReplayChecker,
|
||||
) -> HandshakeResult<(FakeTlsReader<R>, FakeTlsWriter<W>, String)>
|
||||
rng: &SecureRandom,
|
||||
) -> HandshakeResult<(FakeTlsReader<R>, FakeTlsWriter<W>, String), R, W>
|
||||
where
|
||||
R: AsyncRead + Unpin,
|
||||
W: AsyncWrite + Unpin,
|
||||
{
|
||||
debug!(peer = %peer, handshake_len = handshake.len(), "Processing TLS handshake");
|
||||
|
||||
// Check minimum length
|
||||
if handshake.len() < tls::TLS_DIGEST_POS + tls::TLS_DIGEST_LEN + 1 {
|
||||
debug!(peer = %peer, "TLS handshake too short");
|
||||
return HandshakeResult::BadClient;
|
||||
return HandshakeResult::BadClient { reader, writer };
|
||||
}
|
||||
|
||||
// Extract digest for replay check
|
||||
let digest = &handshake[tls::TLS_DIGEST_POS..tls::TLS_DIGEST_POS + tls::TLS_DIGEST_LEN];
|
||||
let digest_half = &digest[..tls::TLS_DIGEST_HALF_LEN];
|
||||
|
||||
// Check for replay
|
||||
if replay_checker.check_tls_digest(digest_half) {
|
||||
warn!(peer = %peer, "TLS replay attack detected");
|
||||
return HandshakeResult::BadClient;
|
||||
warn!(peer = %peer, "TLS replay attack detected (duplicate digest)");
|
||||
return HandshakeResult::BadClient { reader, writer };
|
||||
}
|
||||
|
||||
// Build secrets list
|
||||
let secrets: Vec<(String, Vec<u8>)> = config.users.iter()
|
||||
let secrets: Vec<(String, Vec<u8>)> = config.access.users.iter()
|
||||
.filter_map(|(name, hex)| {
|
||||
hex::decode(hex).ok().map(|bytes| (name.clone(), bytes))
|
||||
})
|
||||
.collect();
|
||||
|
||||
debug!(peer = %peer, num_users = secrets.len(), "Validating TLS handshake against users");
|
||||
|
||||
// Validate handshake
|
||||
let validation = match tls::validate_tls_handshake(
|
||||
handshake,
|
||||
&secrets,
|
||||
config.ignore_time_skew,
|
||||
config.access.ignore_time_skew,
|
||||
) {
|
||||
Some(v) => v,
|
||||
None => {
|
||||
debug!(peer = %peer, "TLS handshake validation failed - no matching user");
|
||||
return HandshakeResult::BadClient;
|
||||
debug!(
|
||||
peer = %peer,
|
||||
ignore_time_skew = config.access.ignore_time_skew,
|
||||
"TLS handshake validation failed - no matching user or time skew"
|
||||
);
|
||||
return HandshakeResult::BadClient { reader, writer };
|
||||
}
|
||||
};
|
||||
|
||||
// Get secret for response
|
||||
let secret = match secrets.iter().find(|(name, _)| *name == validation.user) {
|
||||
Some((_, s)) => s,
|
||||
None => return HandshakeResult::BadClient,
|
||||
None => return HandshakeResult::BadClient { reader, writer },
|
||||
};
|
||||
|
||||
// Build and send response
|
||||
let response = tls::build_server_hello(
|
||||
secret,
|
||||
&validation.digest,
|
||||
&validation.session_id,
|
||||
config.fake_cert_len,
|
||||
config.censorship.fake_cert_len,
|
||||
rng,
|
||||
);
|
||||
|
||||
debug!(peer = %peer, response_len = response.len(), "Sending TLS ServerHello");
|
||||
|
||||
if let Err(e) = writer.write_all(&response).await {
|
||||
warn!(peer = %peer, error = %e, "Failed to write TLS ServerHello");
|
||||
return HandshakeResult::Error(ProxyError::Io(e));
|
||||
}
|
||||
|
||||
if let Err(e) = writer.flush().await {
|
||||
warn!(peer = %peer, error = %e, "Failed to flush TLS ServerHello");
|
||||
return HandshakeResult::Error(ProxyError::Io(e));
|
||||
}
|
||||
|
||||
// Record for replay protection
|
||||
replay_checker.add_tls_digest(digest_half);
|
||||
|
||||
info!(
|
||||
@@ -136,39 +146,28 @@ pub async fn handle_mtproto_handshake<R, W>(
|
||||
config: &ProxyConfig,
|
||||
replay_checker: &ReplayChecker,
|
||||
is_tls: bool,
|
||||
) -> HandshakeResult<(CryptoReader<R>, CryptoWriter<W>, HandshakeSuccess)>
|
||||
) -> HandshakeResult<(CryptoReader<R>, CryptoWriter<W>, HandshakeSuccess), R, W>
|
||||
where
|
||||
R: AsyncRead + Unpin + Send,
|
||||
W: AsyncWrite + Unpin + Send,
|
||||
{
|
||||
trace!(peer = %peer, handshake = ?hex::encode(handshake), "MTProto handshake bytes");
|
||||
|
||||
// Extract prekey and IV
|
||||
let dec_prekey_iv = &handshake[SKIP_LEN..SKIP_LEN + PREKEY_LEN + IV_LEN];
|
||||
|
||||
debug!(
|
||||
peer = %peer,
|
||||
dec_prekey_iv = %hex::encode(dec_prekey_iv),
|
||||
"Extracted prekey+IV from handshake"
|
||||
);
|
||||
|
||||
// Check for replay
|
||||
if replay_checker.check_handshake(dec_prekey_iv) {
|
||||
warn!(peer = %peer, "MTProto replay attack detected");
|
||||
return HandshakeResult::BadClient;
|
||||
return HandshakeResult::BadClient { reader, writer };
|
||||
}
|
||||
|
||||
// Reversed for encryption direction
|
||||
let enc_prekey_iv: Vec<u8> = dec_prekey_iv.iter().rev().copied().collect();
|
||||
|
||||
// Try each user's secret
|
||||
for (user, secret_hex) in &config.users {
|
||||
for (user, secret_hex) in &config.access.users {
|
||||
let secret = match hex::decode(secret_hex) {
|
||||
Ok(s) => s,
|
||||
Err(_) => continue,
|
||||
};
|
||||
|
||||
// Derive decryption key
|
||||
let dec_prekey = &dec_prekey_iv[..PREKEY_LEN];
|
||||
let dec_iv_bytes = &dec_prekey_iv[PREKEY_LEN..];
|
||||
|
||||
@@ -179,38 +178,23 @@ where
|
||||
|
||||
let dec_iv = u128::from_be_bytes(dec_iv_bytes.try_into().unwrap());
|
||||
|
||||
// Decrypt handshake to check protocol tag
|
||||
let mut decryptor = AesCtr::new(&dec_key, dec_iv);
|
||||
let decrypted = decryptor.decrypt(handshake);
|
||||
|
||||
trace!(
|
||||
peer = %peer,
|
||||
user = %user,
|
||||
decrypted_tail = %hex::encode(&decrypted[PROTO_TAG_POS..]),
|
||||
"Decrypted handshake tail"
|
||||
);
|
||||
|
||||
// Check protocol tag
|
||||
let tag_bytes: [u8; 4] = decrypted[PROTO_TAG_POS..PROTO_TAG_POS + 4]
|
||||
.try_into()
|
||||
.unwrap();
|
||||
|
||||
let proto_tag = match ProtoTag::from_bytes(tag_bytes) {
|
||||
Some(tag) => tag,
|
||||
None => {
|
||||
trace!(peer = %peer, user = %user, tag = %hex::encode(tag_bytes), "Invalid proto tag");
|
||||
continue;
|
||||
}
|
||||
None => continue,
|
||||
};
|
||||
|
||||
debug!(peer = %peer, user = %user, proto = ?proto_tag, "Found valid proto tag");
|
||||
|
||||
// Check if mode is enabled
|
||||
let mode_ok = match proto_tag {
|
||||
ProtoTag::Secure => {
|
||||
if is_tls { config.modes.tls } else { config.modes.secure }
|
||||
if is_tls { config.general.modes.tls } else { config.general.modes.secure }
|
||||
}
|
||||
ProtoTag::Intermediate | ProtoTag::Abridged => config.modes.classic,
|
||||
ProtoTag::Intermediate | ProtoTag::Abridged => config.general.modes.classic,
|
||||
};
|
||||
|
||||
if !mode_ok {
|
||||
@@ -218,12 +202,10 @@ where
|
||||
continue;
|
||||
}
|
||||
|
||||
// Extract DC index
|
||||
let dc_idx = i16::from_le_bytes(
|
||||
decrypted[DC_IDX_POS..DC_IDX_POS + 2].try_into().unwrap()
|
||||
);
|
||||
|
||||
// Derive encryption key
|
||||
let enc_prekey = &enc_prekey_iv[..PREKEY_LEN];
|
||||
let enc_iv_bytes = &enc_prekey_iv[PREKEY_LEN..];
|
||||
|
||||
@@ -234,10 +216,8 @@ where
|
||||
|
||||
let enc_iv = u128::from_be_bytes(enc_iv_bytes.try_into().unwrap());
|
||||
|
||||
// Record for replay protection
|
||||
replay_checker.add_handshake(dec_prekey_iv);
|
||||
|
||||
// Create new cipher instances
|
||||
let decryptor = AesCtr::new(&dec_key, dec_iv);
|
||||
let encryptor = AesCtr::new(&enc_key, enc_iv);
|
||||
|
||||
@@ -270,56 +250,37 @@ where
|
||||
}
|
||||
|
||||
debug!(peer = %peer, "MTProto handshake: no matching user found");
|
||||
HandshakeResult::BadClient
|
||||
HandshakeResult::BadClient { reader, writer }
|
||||
}
|
||||
|
||||
/// Generate nonce for Telegram connection
|
||||
///
|
||||
/// In FAST MODE: we use the same keys for TG as for client, but reversed.
|
||||
/// This means: client's enc_key becomes TG's dec_key and vice versa.
|
||||
pub fn generate_tg_nonce(
|
||||
proto_tag: ProtoTag,
|
||||
client_dec_key: &[u8; 32],
|
||||
client_dec_iv: u128,
|
||||
rng: &SecureRandom,
|
||||
fast_mode: bool,
|
||||
) -> ([u8; HANDSHAKE_LEN], [u8; 32], u128, [u8; 32], u128) {
|
||||
loop {
|
||||
let bytes = SECURE_RANDOM.bytes(HANDSHAKE_LEN);
|
||||
let bytes = rng.bytes(HANDSHAKE_LEN);
|
||||
let mut nonce: [u8; HANDSHAKE_LEN] = bytes.try_into().unwrap();
|
||||
|
||||
// Check reserved patterns
|
||||
if RESERVED_NONCE_FIRST_BYTES.contains(&nonce[0]) {
|
||||
continue;
|
||||
}
|
||||
if RESERVED_NONCE_FIRST_BYTES.contains(&nonce[0]) { continue; }
|
||||
|
||||
let first_four: [u8; 4] = nonce[..4].try_into().unwrap();
|
||||
if RESERVED_NONCE_BEGINNINGS.contains(&first_four) {
|
||||
continue;
|
||||
}
|
||||
if RESERVED_NONCE_BEGINNINGS.contains(&first_four) { continue; }
|
||||
|
||||
let continue_four: [u8; 4] = nonce[4..8].try_into().unwrap();
|
||||
if RESERVED_NONCE_CONTINUES.contains(&continue_four) {
|
||||
continue;
|
||||
}
|
||||
if RESERVED_NONCE_CONTINUES.contains(&continue_four) { continue; }
|
||||
|
||||
// Set protocol tag
|
||||
nonce[PROTO_TAG_POS..PROTO_TAG_POS + 4].copy_from_slice(&proto_tag.to_bytes());
|
||||
|
||||
// Fast mode: copy client's dec_key+iv (this becomes TG's enc direction)
|
||||
// In fast mode, we make TG use the same keys as client but swapped:
|
||||
// - What we decrypt FROM TG = what we encrypt TO client (so no re-encryption needed)
|
||||
// - What we encrypt TO TG = what we decrypt FROM client
|
||||
if fast_mode {
|
||||
// Put client's dec_key + dec_iv into nonce[8:56]
|
||||
// This will be used by TG for encryption TO us
|
||||
nonce[SKIP_LEN..SKIP_LEN + KEY_LEN].copy_from_slice(client_dec_key);
|
||||
nonce[SKIP_LEN + KEY_LEN..SKIP_LEN + KEY_LEN + IV_LEN]
|
||||
.copy_from_slice(&client_dec_iv.to_be_bytes());
|
||||
}
|
||||
|
||||
// Now compute what keys WE will use for TG connection
|
||||
// enc_key_iv = nonce[8:56] (for encrypting TO TG)
|
||||
// dec_key_iv = nonce[8:56] reversed (for decrypting FROM TG)
|
||||
let enc_key_iv = &nonce[SKIP_LEN..SKIP_LEN + KEY_LEN + IV_LEN];
|
||||
let dec_key_iv: Vec<u8> = enc_key_iv.iter().rev().copied().collect();
|
||||
|
||||
@@ -329,44 +290,22 @@ pub fn generate_tg_nonce(
|
||||
let tg_dec_key: [u8; 32] = dec_key_iv[..KEY_LEN].try_into().unwrap();
|
||||
let tg_dec_iv = u128::from_be_bytes(dec_key_iv[KEY_LEN..].try_into().unwrap());
|
||||
|
||||
debug!(
|
||||
fast_mode = fast_mode,
|
||||
tg_enc_key = %hex::encode(&tg_enc_key[..8]),
|
||||
tg_dec_key = %hex::encode(&tg_dec_key[..8]),
|
||||
"Generated TG nonce"
|
||||
);
|
||||
|
||||
return (nonce, tg_enc_key, tg_enc_iv, tg_dec_key, tg_dec_iv);
|
||||
}
|
||||
}
|
||||
|
||||
/// Encrypt nonce for sending to Telegram
|
||||
///
|
||||
/// Only the part from PROTO_TAG_POS onwards is encrypted.
|
||||
/// The encryption key is derived from enc_key_iv in the nonce itself.
|
||||
pub fn encrypt_tg_nonce(nonce: &[u8; HANDSHAKE_LEN]) -> Vec<u8> {
|
||||
// enc_key_iv is at nonce[8:56]
|
||||
let enc_key_iv = &nonce[SKIP_LEN..SKIP_LEN + KEY_LEN + IV_LEN];
|
||||
|
||||
// Key for encrypting is just the first 32 bytes of enc_key_iv
|
||||
let key: [u8; 32] = enc_key_iv[..KEY_LEN].try_into().unwrap();
|
||||
let iv = u128::from_be_bytes(enc_key_iv[KEY_LEN..].try_into().unwrap());
|
||||
|
||||
let mut encryptor = AesCtr::new(&key, iv);
|
||||
|
||||
// Encrypt the entire nonce first, then take only the encrypted tail
|
||||
let encrypted_full = encryptor.encrypt(nonce);
|
||||
|
||||
// Result: unencrypted head + encrypted tail
|
||||
let mut result = nonce[..PROTO_TAG_POS].to_vec();
|
||||
result.extend_from_slice(&encrypted_full[PROTO_TAG_POS..]);
|
||||
|
||||
trace!(
|
||||
original = %hex::encode(&nonce[PROTO_TAG_POS..]),
|
||||
encrypted = %hex::encode(&result[PROTO_TAG_POS..]),
|
||||
"Encrypted nonce tail"
|
||||
);
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
@@ -379,13 +318,12 @@ mod tests {
|
||||
let client_dec_key = [0x42u8; 32];
|
||||
let client_dec_iv = 12345u128;
|
||||
|
||||
let (nonce, tg_enc_key, tg_enc_iv, tg_dec_key, tg_dec_iv) =
|
||||
generate_tg_nonce(ProtoTag::Secure, &client_dec_key, client_dec_iv, false);
|
||||
let rng = SecureRandom::new();
|
||||
let (nonce, _tg_enc_key, _tg_enc_iv, _tg_dec_key, _tg_dec_iv) =
|
||||
generate_tg_nonce(ProtoTag::Secure, &client_dec_key, client_dec_iv, &rng, false);
|
||||
|
||||
// Check length
|
||||
assert_eq!(nonce.len(), HANDSHAKE_LEN);
|
||||
|
||||
// Check proto tag is set
|
||||
let tag_bytes: [u8; 4] = nonce[PROTO_TAG_POS..PROTO_TAG_POS + 4].try_into().unwrap();
|
||||
assert_eq!(ProtoTag::from_bytes(tag_bytes), Some(ProtoTag::Secure));
|
||||
}
|
||||
@@ -395,17 +333,35 @@ mod tests {
|
||||
let client_dec_key = [0x42u8; 32];
|
||||
let client_dec_iv = 12345u128;
|
||||
|
||||
let rng = SecureRandom::new();
|
||||
let (nonce, _, _, _, _) =
|
||||
generate_tg_nonce(ProtoTag::Secure, &client_dec_key, client_dec_iv, false);
|
||||
generate_tg_nonce(ProtoTag::Secure, &client_dec_key, client_dec_iv, &rng, false);
|
||||
|
||||
let encrypted = encrypt_tg_nonce(&nonce);
|
||||
|
||||
assert_eq!(encrypted.len(), HANDSHAKE_LEN);
|
||||
|
||||
// First PROTO_TAG_POS bytes should be unchanged
|
||||
assert_eq!(&encrypted[..PROTO_TAG_POS], &nonce[..PROTO_TAG_POS]);
|
||||
|
||||
// Rest should be different (encrypted)
|
||||
assert_ne!(&encrypted[PROTO_TAG_POS..], &nonce[PROTO_TAG_POS..]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_handshake_success_zeroize_on_drop() {
|
||||
let success = HandshakeSuccess {
|
||||
user: "test".to_string(),
|
||||
dc_idx: 2,
|
||||
proto_tag: ProtoTag::Secure,
|
||||
dec_key: [0xAA; 32],
|
||||
dec_iv: 0xBBBBBBBB,
|
||||
enc_key: [0xCC; 32],
|
||||
enc_iv: 0xDDDDDDDD,
|
||||
peer: "127.0.0.1:1234".parse().unwrap(),
|
||||
is_tls: true,
|
||||
};
|
||||
|
||||
assert_eq!(success.dec_key, [0xAA; 32]);
|
||||
assert_eq!(success.enc_key, [0xCC; 32]);
|
||||
|
||||
drop(success);
|
||||
// Drop impl zeroizes key material without panic
|
||||
}
|
||||
}
|
||||
@@ -1,35 +1,76 @@
|
||||
//! Masking - forward unrecognized traffic to mask host
|
||||
|
||||
use std::time::Duration;
|
||||
use std::str;
|
||||
use tokio::net::TcpStream;
|
||||
use tokio::io::{AsyncReadExt, AsyncWriteExt};
|
||||
use tokio::io::{AsyncRead, AsyncWrite, AsyncReadExt, AsyncWriteExt};
|
||||
use tokio::time::timeout;
|
||||
use tracing::debug;
|
||||
use crate::config::ProxyConfig;
|
||||
use crate::transport::set_linger_zero;
|
||||
|
||||
const MASK_TIMEOUT: Duration = Duration::from_secs(5);
|
||||
/// Maximum duration for the entire masking relay.
|
||||
/// Limits resource consumption from slow-loris attacks and port scanners.
|
||||
const MASK_RELAY_TIMEOUT: Duration = Duration::from_secs(60);
|
||||
const MASK_BUFFER_SIZE: usize = 8192;
|
||||
|
||||
/// Detect client type based on initial data
|
||||
fn detect_client_type(data: &[u8]) -> &'static str {
|
||||
// Check for HTTP request
|
||||
if data.len() > 4 {
|
||||
if data.starts_with(b"GET ") || data.starts_with(b"POST") ||
|
||||
data.starts_with(b"HEAD") || data.starts_with(b"PUT ") ||
|
||||
data.starts_with(b"DELETE") || data.starts_with(b"OPTIONS") {
|
||||
return "HTTP";
|
||||
}
|
||||
}
|
||||
|
||||
// Check for TLS ClientHello (0x16 = handshake, 0x03 0x01-0x03 = TLS version)
|
||||
if data.len() > 3 && data[0] == 0x16 && data[1] == 0x03 {
|
||||
return "TLS-scanner";
|
||||
}
|
||||
|
||||
// Check for SSH
|
||||
if data.starts_with(b"SSH-") {
|
||||
return "SSH";
|
||||
}
|
||||
|
||||
// Port scanner (very short data)
|
||||
if data.len() < 10 {
|
||||
return "port-scanner";
|
||||
}
|
||||
|
||||
"unknown"
|
||||
}
|
||||
|
||||
/// Handle a bad client by forwarding to mask host
|
||||
pub async fn handle_bad_client(
|
||||
mut client: TcpStream,
|
||||
pub async fn handle_bad_client<R, W>(
|
||||
mut reader: R,
|
||||
mut writer: W,
|
||||
initial_data: &[u8],
|
||||
config: &ProxyConfig,
|
||||
) {
|
||||
if !config.mask {
|
||||
)
|
||||
where
|
||||
R: AsyncRead + Unpin + Send + 'static,
|
||||
W: AsyncWrite + Unpin + Send + 'static,
|
||||
{
|
||||
if !config.censorship.mask {
|
||||
// Masking disabled, just consume data
|
||||
consume_client_data(client).await;
|
||||
consume_client_data(reader).await;
|
||||
return;
|
||||
}
|
||||
|
||||
let mask_host = config.mask_host.as_deref()
|
||||
.unwrap_or(&config.tls_domain);
|
||||
let mask_port = config.mask_port;
|
||||
let client_type = detect_client_type(initial_data);
|
||||
|
||||
let mask_host = config.censorship.mask_host.as_deref()
|
||||
.unwrap_or(&config.censorship.tls_domain);
|
||||
let mask_port = config.censorship.mask_port;
|
||||
|
||||
debug!(
|
||||
client_type = client_type,
|
||||
host = %mask_host,
|
||||
port = mask_port,
|
||||
data_len = initial_data.len(),
|
||||
"Forwarding bad client to mask host"
|
||||
);
|
||||
|
||||
@@ -40,33 +81,32 @@ pub async fn handle_bad_client(
|
||||
TcpStream::connect(&mask_addr)
|
||||
).await;
|
||||
|
||||
let mut mask_stream = match connect_result {
|
||||
let mask_stream = match connect_result {
|
||||
Ok(Ok(s)) => s,
|
||||
Ok(Err(e)) => {
|
||||
debug!(error = %e, "Failed to connect to mask host");
|
||||
consume_client_data(client).await;
|
||||
consume_client_data(reader).await;
|
||||
return;
|
||||
}
|
||||
Err(_) => {
|
||||
debug!("Timeout connecting to mask host");
|
||||
consume_client_data(client).await;
|
||||
consume_client_data(reader).await;
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
let (mut mask_read, mut mask_write) = mask_stream.into_split();
|
||||
|
||||
// Send initial data to mask host
|
||||
if mask_stream.write_all(initial_data).await.is_err() {
|
||||
if mask_write.write_all(initial_data).await.is_err() {
|
||||
return;
|
||||
}
|
||||
|
||||
// Relay traffic
|
||||
let (mut client_read, mut client_write) = client.into_split();
|
||||
let (mut mask_read, mut mask_write) = mask_stream.into_split();
|
||||
|
||||
let c2m = tokio::spawn(async move {
|
||||
let mut buf = vec![0u8; MASK_BUFFER_SIZE];
|
||||
loop {
|
||||
match client_read.read(&mut buf).await {
|
||||
match reader.read(&mut buf).await {
|
||||
Ok(0) | Err(_) => {
|
||||
let _ = mask_write.shutdown().await;
|
||||
break;
|
||||
@@ -85,11 +125,11 @@ pub async fn handle_bad_client(
|
||||
loop {
|
||||
match mask_read.read(&mut buf).await {
|
||||
Ok(0) | Err(_) => {
|
||||
let _ = client_write.shutdown().await;
|
||||
let _ = writer.shutdown().await;
|
||||
break;
|
||||
}
|
||||
Ok(n) => {
|
||||
if client_write.write_all(&buf[..n]).await.is_err() {
|
||||
if writer.write_all(&buf[..n]).await.is_err() {
|
||||
break;
|
||||
}
|
||||
}
|
||||
@@ -105,9 +145,9 @@ pub async fn handle_bad_client(
|
||||
}
|
||||
|
||||
/// Just consume all data from client without responding
|
||||
async fn consume_client_data(mut client: TcpStream) {
|
||||
async fn consume_client_data<R: AsyncRead + Unpin>(mut reader: R) {
|
||||
let mut buf = vec![0u8; MASK_BUFFER_SIZE];
|
||||
while let Ok(n) = client.read(&mut buf).await {
|
||||
while let Ok(n) = reader.read(&mut buf).await {
|
||||
if n == 0 {
|
||||
break;
|
||||
}
|
||||
|
||||
@@ -1,22 +1,320 @@
|
||||
//! Bidirectional Relay
|
||||
//! Bidirectional Relay — poll-based, no head-of-line blocking
|
||||
//!
|
||||
//! ## What changed and why
|
||||
//!
|
||||
//! Previous implementation used a single-task `select! { biased; ... }` loop
|
||||
//! where each branch called `write_all()`. This caused head-of-line blocking:
|
||||
//! while `write_all()` waited for a slow writer (e.g. client on 3G downloading
|
||||
//! media), the entire loop was blocked — the other direction couldn't make progress.
|
||||
//!
|
||||
//! Symptoms observed in production:
|
||||
//! - Media loading at ~8 KB/s despite fast server connection
|
||||
//! - Stop-and-go pattern with 50–500ms gaps between chunks
|
||||
//! - `biased` select starving S→C direction
|
||||
//! - Some users unable to load media at all
|
||||
//!
|
||||
//! ## New architecture
|
||||
//!
|
||||
//! Uses `tokio::io::copy_bidirectional` which polls both directions concurrently
|
||||
//! in a single task via non-blocking `poll_read` / `poll_write` calls:
|
||||
//!
|
||||
//! Old (select! + write_all — BLOCKING):
|
||||
//!
|
||||
//! loop {
|
||||
//! select! {
|
||||
//! biased;
|
||||
//! data = client.read() => { server.write_all(data).await; } ← BLOCKS here
|
||||
//! data = server.read() => { client.write_all(data).await; } ← can't run
|
||||
//! }
|
||||
//! }
|
||||
//!
|
||||
//! New (copy_bidirectional — CONCURRENT):
|
||||
//!
|
||||
//! poll(cx) {
|
||||
//! // Both directions polled in the same poll cycle
|
||||
//! C→S: poll_read(client) → poll_write(server) // non-blocking
|
||||
//! S→C: poll_read(server) → poll_write(client) // non-blocking
|
||||
//! // If one writer is Pending, the other direction still progresses
|
||||
//! }
|
||||
//!
|
||||
//! Benefits:
|
||||
//! - No head-of-line blocking: slow client download doesn't block uploads
|
||||
//! - No biased starvation: fair polling of both directions
|
||||
//! - Proper flush: `copy_bidirectional` calls `poll_flush` when reader stalls,
|
||||
//! so CryptoWriter's pending ciphertext is always drained (fixes "stuck at 95%")
|
||||
//! - No deadlock risk: old write_all could deadlock when both TCP buffers filled;
|
||||
//! poll-based approach lets TCP flow control work correctly
|
||||
//!
|
||||
//! Stats tracking:
|
||||
//! - `StatsIo` wraps client side, intercepts `poll_read` / `poll_write`
|
||||
//! - `poll_read` on client = C→S (client sending) → `octets_from`, `msgs_from`
|
||||
//! - `poll_write` on client = S→C (to client) → `octets_to`, `msgs_to`
|
||||
//! - `SharedCounters` (atomics) let the watchdog read stats without locking
|
||||
|
||||
use std::io;
|
||||
use std::pin::Pin;
|
||||
use std::sync::Arc;
|
||||
use tokio::io::{AsyncRead, AsyncWrite, AsyncReadExt, AsyncWriteExt};
|
||||
use std::sync::atomic::{AtomicU64, Ordering};
|
||||
use std::task::{Context, Poll};
|
||||
use std::time::Duration;
|
||||
use tokio::io::{AsyncRead, AsyncWrite, AsyncWriteExt, ReadBuf, copy_bidirectional};
|
||||
use tokio::time::Instant;
|
||||
use tracing::{debug, trace, warn};
|
||||
use crate::error::Result;
|
||||
use crate::stats::Stats;
|
||||
use std::sync::atomic::{AtomicU64, Ordering};
|
||||
use crate::stream::BufferPool;
|
||||
|
||||
const BUFFER_SIZE: usize = 65536;
|
||||
// ============= Constants =============
|
||||
|
||||
/// Relay data bidirectionally between client and server
|
||||
/// Activity timeout for iOS compatibility.
|
||||
///
|
||||
/// iOS keeps Telegram connections alive in background for up to 30 minutes.
|
||||
/// Closing earlier causes unnecessary reconnects and handshake overhead.
|
||||
const ACTIVITY_TIMEOUT: Duration = Duration::from_secs(1800);
|
||||
|
||||
/// Watchdog check interval — also used for periodic rate logging.
|
||||
///
|
||||
/// 10 seconds gives responsive timeout detection (±10s accuracy)
|
||||
/// without measurable overhead from atomic reads.
|
||||
const WATCHDOG_INTERVAL: Duration = Duration::from_secs(10);
|
||||
|
||||
// ============= CombinedStream =============
|
||||
|
||||
/// Combines separate read and write halves into a single bidirectional stream.
|
||||
///
|
||||
/// `copy_bidirectional` requires `AsyncRead + AsyncWrite` on each side,
|
||||
/// but the handshake layer produces split reader/writer pairs
|
||||
/// (e.g. `CryptoReader<FakeTlsReader<OwnedReadHalf>>` + `CryptoWriter<...>`).
|
||||
///
|
||||
/// This wrapper reunifies them with zero overhead — each trait method
|
||||
/// delegates directly to the corresponding half. No buffering, no copies.
|
||||
///
|
||||
/// Safety: `poll_read` only touches `reader`, `poll_write` only touches `writer`,
|
||||
/// so there's no aliasing even though both are called on the same `&mut self`.
|
||||
struct CombinedStream<R, W> {
|
||||
reader: R,
|
||||
writer: W,
|
||||
}
|
||||
|
||||
impl<R, W> CombinedStream<R, W> {
|
||||
fn new(reader: R, writer: W) -> Self {
|
||||
Self { reader, writer }
|
||||
}
|
||||
}
|
||||
|
||||
impl<R: AsyncRead + Unpin, W: Unpin> AsyncRead for CombinedStream<R, W> {
|
||||
#[inline]
|
||||
fn poll_read(
|
||||
self: Pin<&mut Self>,
|
||||
cx: &mut Context<'_>,
|
||||
buf: &mut ReadBuf<'_>,
|
||||
) -> Poll<io::Result<()>> {
|
||||
Pin::new(&mut self.get_mut().reader).poll_read(cx, buf)
|
||||
}
|
||||
}
|
||||
|
||||
impl<R: Unpin, W: AsyncWrite + Unpin> AsyncWrite for CombinedStream<R, W> {
|
||||
#[inline]
|
||||
fn poll_write(
|
||||
self: Pin<&mut Self>,
|
||||
cx: &mut Context<'_>,
|
||||
buf: &[u8],
|
||||
) -> Poll<io::Result<usize>> {
|
||||
Pin::new(&mut self.get_mut().writer).poll_write(cx, buf)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
|
||||
Pin::new(&mut self.get_mut().writer).poll_flush(cx)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
|
||||
Pin::new(&mut self.get_mut().writer).poll_shutdown(cx)
|
||||
}
|
||||
}
|
||||
|
||||
// ============= SharedCounters =============
|
||||
|
||||
/// Atomic counters shared between the relay (via StatsIo) and the watchdog task.
|
||||
///
|
||||
/// Using `Relaxed` ordering is sufficient because:
|
||||
/// - Counters are monotonically increasing (no ABA problem)
|
||||
/// - Slight staleness in watchdog reads is harmless (±10s check interval anyway)
|
||||
/// - No ordering dependencies between different counters
|
||||
struct SharedCounters {
|
||||
/// Bytes read from client (C→S direction)
|
||||
c2s_bytes: AtomicU64,
|
||||
/// Bytes written to client (S→C direction)
|
||||
s2c_bytes: AtomicU64,
|
||||
/// Number of poll_read completions (≈ C→S chunks)
|
||||
c2s_ops: AtomicU64,
|
||||
/// Number of poll_write completions (≈ S→C chunks)
|
||||
s2c_ops: AtomicU64,
|
||||
/// Milliseconds since relay epoch of last I/O activity
|
||||
last_activity_ms: AtomicU64,
|
||||
}
|
||||
|
||||
impl SharedCounters {
|
||||
fn new() -> Self {
|
||||
Self {
|
||||
c2s_bytes: AtomicU64::new(0),
|
||||
s2c_bytes: AtomicU64::new(0),
|
||||
c2s_ops: AtomicU64::new(0),
|
||||
s2c_ops: AtomicU64::new(0),
|
||||
last_activity_ms: AtomicU64::new(0),
|
||||
}
|
||||
}
|
||||
|
||||
/// Record activity at this instant.
|
||||
#[inline]
|
||||
fn touch(&self, now: Instant, epoch: Instant) {
|
||||
let ms = now.duration_since(epoch).as_millis() as u64;
|
||||
self.last_activity_ms.store(ms, Ordering::Relaxed);
|
||||
}
|
||||
|
||||
/// How long since last recorded activity.
|
||||
fn idle_duration(&self, now: Instant, epoch: Instant) -> Duration {
|
||||
let last_ms = self.last_activity_ms.load(Ordering::Relaxed);
|
||||
let now_ms = now.duration_since(epoch).as_millis() as u64;
|
||||
Duration::from_millis(now_ms.saturating_sub(last_ms))
|
||||
}
|
||||
}
|
||||
|
||||
// ============= StatsIo =============
|
||||
|
||||
/// Transparent I/O wrapper that tracks per-user statistics and activity.
|
||||
///
|
||||
/// Wraps the **client** side of the relay. Direction mapping:
|
||||
///
|
||||
/// | poll method | direction | stats updated |
|
||||
/// |-------------|-----------|--------------------------------------|
|
||||
/// | `poll_read` | C→S | `octets_from`, `msgs_from`, counters |
|
||||
/// | `poll_write` | S→C | `octets_to`, `msgs_to`, counters |
|
||||
///
|
||||
/// Both update the shared activity timestamp for the watchdog.
|
||||
///
|
||||
/// Note on message counts: the original code counted one `read()`/`write_all()`
|
||||
/// as one "message". Here we count `poll_read`/`poll_write` completions instead.
|
||||
/// Byte counts are identical; op counts may differ slightly due to different
|
||||
/// internal buffering in `copy_bidirectional`. This is fine for monitoring.
|
||||
struct StatsIo<S> {
|
||||
inner: S,
|
||||
counters: Arc<SharedCounters>,
|
||||
stats: Arc<Stats>,
|
||||
user: String,
|
||||
epoch: Instant,
|
||||
}
|
||||
|
||||
impl<S> StatsIo<S> {
|
||||
fn new(
|
||||
inner: S,
|
||||
counters: Arc<SharedCounters>,
|
||||
stats: Arc<Stats>,
|
||||
user: String,
|
||||
epoch: Instant,
|
||||
) -> Self {
|
||||
// Mark initial activity so the watchdog doesn't fire before data flows
|
||||
counters.touch(Instant::now(), epoch);
|
||||
Self { inner, counters, stats, user, epoch }
|
||||
}
|
||||
}
|
||||
|
||||
impl<S: AsyncRead + Unpin> AsyncRead for StatsIo<S> {
|
||||
fn poll_read(
|
||||
self: Pin<&mut Self>,
|
||||
cx: &mut Context<'_>,
|
||||
buf: &mut ReadBuf<'_>,
|
||||
) -> Poll<io::Result<()>> {
|
||||
let this = self.get_mut();
|
||||
let before = buf.filled().len();
|
||||
|
||||
match Pin::new(&mut this.inner).poll_read(cx, buf) {
|
||||
Poll::Ready(Ok(())) => {
|
||||
let n = buf.filled().len() - before;
|
||||
if n > 0 {
|
||||
// C→S: client sent data
|
||||
this.counters.c2s_bytes.fetch_add(n as u64, Ordering::Relaxed);
|
||||
this.counters.c2s_ops.fetch_add(1, Ordering::Relaxed);
|
||||
this.counters.touch(Instant::now(), this.epoch);
|
||||
|
||||
this.stats.add_user_octets_from(&this.user, n as u64);
|
||||
this.stats.increment_user_msgs_from(&this.user);
|
||||
|
||||
trace!(user = %this.user, bytes = n, "C->S");
|
||||
}
|
||||
Poll::Ready(Ok(()))
|
||||
}
|
||||
other => other,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<S: AsyncWrite + Unpin> AsyncWrite for StatsIo<S> {
|
||||
fn poll_write(
|
||||
self: Pin<&mut Self>,
|
||||
cx: &mut Context<'_>,
|
||||
buf: &[u8],
|
||||
) -> Poll<io::Result<usize>> {
|
||||
let this = self.get_mut();
|
||||
|
||||
match Pin::new(&mut this.inner).poll_write(cx, buf) {
|
||||
Poll::Ready(Ok(n)) => {
|
||||
if n > 0 {
|
||||
// S→C: data written to client
|
||||
this.counters.s2c_bytes.fetch_add(n as u64, Ordering::Relaxed);
|
||||
this.counters.s2c_ops.fetch_add(1, Ordering::Relaxed);
|
||||
this.counters.touch(Instant::now(), this.epoch);
|
||||
|
||||
this.stats.add_user_octets_to(&this.user, n as u64);
|
||||
this.stats.increment_user_msgs_to(&this.user);
|
||||
|
||||
trace!(user = %this.user, bytes = n, "S->C");
|
||||
}
|
||||
Poll::Ready(Ok(n))
|
||||
}
|
||||
other => other,
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
|
||||
Pin::new(&mut self.get_mut().inner).poll_flush(cx)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
|
||||
Pin::new(&mut self.get_mut().inner).poll_shutdown(cx)
|
||||
}
|
||||
}
|
||||
|
||||
// ============= Relay =============
|
||||
|
||||
/// Relay data bidirectionally between client and server.
|
||||
///
|
||||
/// Uses `tokio::io::copy_bidirectional` for concurrent, non-blocking data transfer.
|
||||
///
|
||||
/// ## API compatibility
|
||||
///
|
||||
/// Signature is identical to the previous implementation. The `_buffer_pool`
|
||||
/// parameter is retained for call-site compatibility — `copy_bidirectional`
|
||||
/// manages its own internal buffers (8 KB per direction).
|
||||
///
|
||||
/// ## Guarantees preserved
|
||||
///
|
||||
/// - Activity timeout: 30 minutes of inactivity → clean shutdown
|
||||
/// - Per-user stats: bytes and ops counted per direction
|
||||
/// - Periodic rate logging: every 10 seconds when active
|
||||
/// - Clean shutdown: both write sides are shut down on exit
|
||||
/// - Error propagation: I/O errors are returned as `ProxyError::Io`
|
||||
pub async fn relay_bidirectional<CR, CW, SR, SW>(
|
||||
mut client_reader: CR,
|
||||
mut client_writer: CW,
|
||||
mut server_reader: SR,
|
||||
mut server_writer: SW,
|
||||
client_reader: CR,
|
||||
client_writer: CW,
|
||||
server_reader: SR,
|
||||
server_writer: SW,
|
||||
user: &str,
|
||||
stats: Arc<Stats>,
|
||||
_buffer_pool: Arc<BufferPool>,
|
||||
) -> Result<()>
|
||||
where
|
||||
CR: AsyncRead + Unpin + Send + 'static,
|
||||
@@ -24,139 +322,145 @@ where
|
||||
SR: AsyncRead + Unpin + Send + 'static,
|
||||
SW: AsyncWrite + Unpin + Send + 'static,
|
||||
{
|
||||
let user_c2s = user.to_string();
|
||||
let user_s2c = user.to_string();
|
||||
let epoch = Instant::now();
|
||||
let counters = Arc::new(SharedCounters::new());
|
||||
let user_owned = user.to_string();
|
||||
|
||||
// Используем Arc::clone вместо stats.clone()
|
||||
let stats_c2s = Arc::clone(&stats);
|
||||
let stats_s2c = Arc::clone(&stats);
|
||||
// ── Combine split halves into bidirectional streams ──────────────
|
||||
let client_combined = CombinedStream::new(client_reader, client_writer);
|
||||
let mut server = CombinedStream::new(server_reader, server_writer);
|
||||
|
||||
let c2s_bytes = Arc::new(AtomicU64::new(0));
|
||||
let s2c_bytes = Arc::new(AtomicU64::new(0));
|
||||
let c2s_bytes_clone = Arc::clone(&c2s_bytes);
|
||||
let s2c_bytes_clone = Arc::clone(&s2c_bytes);
|
||||
// Wrap client with stats/activity tracking
|
||||
let mut client = StatsIo::new(
|
||||
client_combined,
|
||||
Arc::clone(&counters),
|
||||
Arc::clone(&stats),
|
||||
user_owned.clone(),
|
||||
epoch,
|
||||
);
|
||||
|
||||
// Client -> Server task
|
||||
let c2s = tokio::spawn(async move {
|
||||
let mut buf = vec![0u8; BUFFER_SIZE];
|
||||
let mut total_bytes = 0u64;
|
||||
let mut msg_count = 0u64;
|
||||
// ── Watchdog: activity timeout + periodic rate logging ──────────
|
||||
let wd_counters = Arc::clone(&counters);
|
||||
let wd_user = user_owned.clone();
|
||||
|
||||
let watchdog = async {
|
||||
let mut prev_c2s: u64 = 0;
|
||||
let mut prev_s2c: u64 = 0;
|
||||
|
||||
loop {
|
||||
match client_reader.read(&mut buf).await {
|
||||
Ok(0) => {
|
||||
tokio::time::sleep(WATCHDOG_INTERVAL).await;
|
||||
|
||||
let now = Instant::now();
|
||||
let idle = wd_counters.idle_duration(now, epoch);
|
||||
|
||||
// ── Activity timeout ────────────────────────────────────
|
||||
if idle >= ACTIVITY_TIMEOUT {
|
||||
let c2s = wd_counters.c2s_bytes.load(Ordering::Relaxed);
|
||||
let s2c = wd_counters.s2c_bytes.load(Ordering::Relaxed);
|
||||
warn!(
|
||||
user = %wd_user,
|
||||
c2s_bytes = c2s,
|
||||
s2c_bytes = s2c,
|
||||
idle_secs = idle.as_secs(),
|
||||
"Activity timeout"
|
||||
);
|
||||
return; // Causes select! to cancel copy_bidirectional
|
||||
}
|
||||
|
||||
// ── Periodic rate logging ───────────────────────────────
|
||||
let c2s = wd_counters.c2s_bytes.load(Ordering::Relaxed);
|
||||
let s2c = wd_counters.s2c_bytes.load(Ordering::Relaxed);
|
||||
let c2s_delta = c2s - prev_c2s;
|
||||
let s2c_delta = s2c - prev_s2c;
|
||||
|
||||
if c2s_delta > 0 || s2c_delta > 0 {
|
||||
let secs = WATCHDOG_INTERVAL.as_secs_f64();
|
||||
debug!(
|
||||
user = %user_c2s,
|
||||
total_bytes = total_bytes,
|
||||
msgs = msg_count,
|
||||
"Client closed connection (C->S)"
|
||||
user = %wd_user,
|
||||
c2s_kbps = (c2s_delta as f64 / secs / 1024.0) as u64,
|
||||
s2c_kbps = (s2c_delta as f64 / secs / 1024.0) as u64,
|
||||
c2s_total = c2s,
|
||||
s2c_total = s2c,
|
||||
"Relay active"
|
||||
);
|
||||
let _ = server_writer.shutdown().await;
|
||||
break;
|
||||
}
|
||||
Ok(n) => {
|
||||
total_bytes += n as u64;
|
||||
msg_count += 1;
|
||||
c2s_bytes_clone.store(total_bytes, Ordering::Relaxed);
|
||||
|
||||
stats_c2s.add_user_octets_from(&user_c2s, n as u64);
|
||||
stats_c2s.increment_user_msgs_from(&user_c2s);
|
||||
prev_c2s = c2s;
|
||||
prev_s2c = s2c;
|
||||
}
|
||||
};
|
||||
|
||||
trace!(
|
||||
user = %user_c2s,
|
||||
bytes = n,
|
||||
total = total_bytes,
|
||||
data_preview = %hex::encode(&buf[..n.min(32)]),
|
||||
"C->S data"
|
||||
);
|
||||
// ── Run bidirectional copy + watchdog concurrently ───────────────
|
||||
//
|
||||
// copy_bidirectional polls both directions in the same poll() call:
|
||||
// C→S: poll_read(client/StatsIo) → poll_write(server)
|
||||
// S→C: poll_read(server) → poll_write(client/StatsIo)
|
||||
//
|
||||
// When one direction's writer returns Pending, the other direction
|
||||
// continues — no head-of-line blocking.
|
||||
//
|
||||
// When the watchdog fires, select! drops the copy future,
|
||||
// releasing the &mut borrows on client and server.
|
||||
let copy_result = tokio::select! {
|
||||
result = copy_bidirectional(&mut client, &mut server) => Some(result),
|
||||
_ = watchdog => None, // Activity timeout — cancel relay
|
||||
};
|
||||
|
||||
if let Err(e) = server_writer.write_all(&buf[..n]).await {
|
||||
debug!(user = %user_c2s, error = %e, "Failed to write to server");
|
||||
break;
|
||||
}
|
||||
if let Err(e) = server_writer.flush().await {
|
||||
debug!(user = %user_c2s, error = %e, "Failed to flush to server");
|
||||
break;
|
||||
}
|
||||
}
|
||||
Err(e) => {
|
||||
debug!(user = %user_c2s, error = %e, total_bytes = total_bytes, "Client read error");
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
// ── Clean shutdown ──────────────────────────────────────────────
|
||||
// After select!, the losing future is dropped, borrows released.
|
||||
// Shut down both write sides for clean TCP FIN.
|
||||
let _ = client.shutdown().await;
|
||||
let _ = server.shutdown().await;
|
||||
|
||||
// Server -> Client task
|
||||
let s2c = tokio::spawn(async move {
|
||||
let mut buf = vec![0u8; BUFFER_SIZE];
|
||||
let mut total_bytes = 0u64;
|
||||
let mut msg_count = 0u64;
|
||||
// ── Final logging ───────────────────────────────────────────────
|
||||
let c2s_ops = counters.c2s_ops.load(Ordering::Relaxed);
|
||||
let s2c_ops = counters.s2c_ops.load(Ordering::Relaxed);
|
||||
let duration = epoch.elapsed();
|
||||
|
||||
loop {
|
||||
match server_reader.read(&mut buf).await {
|
||||
Ok(0) => {
|
||||
match copy_result {
|
||||
Some(Ok((c2s, s2c))) => {
|
||||
// Normal completion — one side closed the connection
|
||||
debug!(
|
||||
user = %user_s2c,
|
||||
total_bytes = total_bytes,
|
||||
msgs = msg_count,
|
||||
"Server closed connection (S->C)"
|
||||
);
|
||||
let _ = client_writer.shutdown().await;
|
||||
break;
|
||||
}
|
||||
Ok(n) => {
|
||||
total_bytes += n as u64;
|
||||
msg_count += 1;
|
||||
s2c_bytes_clone.store(total_bytes, Ordering::Relaxed);
|
||||
|
||||
stats_s2c.add_user_octets_to(&user_s2c, n as u64);
|
||||
stats_s2c.increment_user_msgs_to(&user_s2c);
|
||||
|
||||
trace!(
|
||||
user = %user_s2c,
|
||||
bytes = n,
|
||||
total = total_bytes,
|
||||
data_preview = %hex::encode(&buf[..n.min(32)]),
|
||||
"S->C data"
|
||||
);
|
||||
|
||||
if let Err(e) = client_writer.write_all(&buf[..n]).await {
|
||||
debug!(user = %user_s2c, error = %e, "Failed to write to client");
|
||||
break;
|
||||
}
|
||||
if let Err(e) = client_writer.flush().await {
|
||||
debug!(user = %user_s2c, error = %e, "Failed to flush to client");
|
||||
break;
|
||||
}
|
||||
}
|
||||
Err(e) => {
|
||||
debug!(user = %user_s2c, error = %e, total_bytes = total_bytes, "Server read error");
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
// Wait for either direction to complete
|
||||
tokio::select! {
|
||||
result = c2s => {
|
||||
if let Err(e) = result {
|
||||
warn!(error = %e, "C->S task panicked");
|
||||
}
|
||||
}
|
||||
result = s2c => {
|
||||
if let Err(e) = result {
|
||||
warn!(error = %e, "S->C task panicked");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
debug!(
|
||||
c2s_bytes = c2s_bytes.load(Ordering::Relaxed),
|
||||
s2c_bytes = s2c_bytes.load(Ordering::Relaxed),
|
||||
user = %user_owned,
|
||||
c2s_bytes = c2s,
|
||||
s2c_bytes = s2c,
|
||||
c2s_msgs = c2s_ops,
|
||||
s2c_msgs = s2c_ops,
|
||||
duration_secs = duration.as_secs(),
|
||||
"Relay finished"
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
Some(Err(e)) => {
|
||||
// I/O error in one of the directions
|
||||
let c2s = counters.c2s_bytes.load(Ordering::Relaxed);
|
||||
let s2c = counters.s2c_bytes.load(Ordering::Relaxed);
|
||||
debug!(
|
||||
user = %user_owned,
|
||||
c2s_bytes = c2s,
|
||||
s2c_bytes = s2c,
|
||||
c2s_msgs = c2s_ops,
|
||||
s2c_msgs = s2c_ops,
|
||||
duration_secs = duration.as_secs(),
|
||||
error = %e,
|
||||
"Relay error"
|
||||
);
|
||||
Err(e.into())
|
||||
}
|
||||
None => {
|
||||
// Activity timeout (watchdog fired)
|
||||
let c2s = counters.c2s_bytes.load(Ordering::Relaxed);
|
||||
let s2c = counters.s2c_bytes.load(Ordering::Relaxed);
|
||||
debug!(
|
||||
user = %user_owned,
|
||||
c2s_bytes = c2s,
|
||||
s2c_bytes = s2c,
|
||||
c2s_msgs = c2s_ops,
|
||||
s2c_msgs = s2c_ops,
|
||||
duration_secs = duration.as_secs(),
|
||||
"Relay finished (activity timeout)"
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
}
|
||||
373
src/stats/mod.rs
373
src/stats/mod.rs
@@ -1,29 +1,28 @@
|
||||
//! Statistics
|
||||
//! Statistics and replay protection
|
||||
|
||||
use std::sync::atomic::{AtomicU64, Ordering};
|
||||
use std::sync::Arc;
|
||||
use std::time::Instant;
|
||||
use std::time::{Instant, Duration};
|
||||
use dashmap::DashMap;
|
||||
use parking_lot::RwLock;
|
||||
use parking_lot::Mutex;
|
||||
use lru::LruCache;
|
||||
use std::num::NonZeroUsize;
|
||||
use std::hash::{Hash, Hasher};
|
||||
use std::collections::hash_map::DefaultHasher;
|
||||
use std::collections::VecDeque;
|
||||
use tracing::debug;
|
||||
|
||||
// ============= Stats =============
|
||||
|
||||
/// Thread-safe statistics
|
||||
#[derive(Default)]
|
||||
pub struct Stats {
|
||||
// Global counters
|
||||
connects_all: AtomicU64,
|
||||
connects_bad: AtomicU64,
|
||||
handshake_timeouts: AtomicU64,
|
||||
|
||||
// Per-user stats
|
||||
user_stats: DashMap<String, UserStats>,
|
||||
|
||||
// Start time
|
||||
start_time: RwLock<Option<Instant>>,
|
||||
start_time: parking_lot::RwLock<Option<Instant>>,
|
||||
}
|
||||
|
||||
/// Per-user statistics
|
||||
#[derive(Default)]
|
||||
pub struct UserStats {
|
||||
pub connects: AtomicU64,
|
||||
@@ -41,42 +40,20 @@ impl Stats {
|
||||
stats
|
||||
}
|
||||
|
||||
// Global stats
|
||||
pub fn increment_connects_all(&self) {
|
||||
self.connects_all.fetch_add(1, Ordering::Relaxed);
|
||||
}
|
||||
pub fn increment_connects_all(&self) { self.connects_all.fetch_add(1, Ordering::Relaxed); }
|
||||
pub fn increment_connects_bad(&self) { self.connects_bad.fetch_add(1, Ordering::Relaxed); }
|
||||
pub fn increment_handshake_timeouts(&self) { self.handshake_timeouts.fetch_add(1, Ordering::Relaxed); }
|
||||
pub fn get_connects_all(&self) -> u64 { self.connects_all.load(Ordering::Relaxed) }
|
||||
pub fn get_connects_bad(&self) -> u64 { self.connects_bad.load(Ordering::Relaxed) }
|
||||
|
||||
pub fn increment_connects_bad(&self) {
|
||||
self.connects_bad.fetch_add(1, Ordering::Relaxed);
|
||||
}
|
||||
|
||||
pub fn increment_handshake_timeouts(&self) {
|
||||
self.handshake_timeouts.fetch_add(1, Ordering::Relaxed);
|
||||
}
|
||||
|
||||
pub fn get_connects_all(&self) -> u64 {
|
||||
self.connects_all.load(Ordering::Relaxed)
|
||||
}
|
||||
|
||||
pub fn get_connects_bad(&self) -> u64 {
|
||||
self.connects_bad.load(Ordering::Relaxed)
|
||||
}
|
||||
|
||||
// User stats
|
||||
pub fn increment_user_connects(&self, user: &str) {
|
||||
self.user_stats
|
||||
.entry(user.to_string())
|
||||
.or_default()
|
||||
.connects
|
||||
.fetch_add(1, Ordering::Relaxed);
|
||||
self.user_stats.entry(user.to_string()).or_default()
|
||||
.connects.fetch_add(1, Ordering::Relaxed);
|
||||
}
|
||||
|
||||
pub fn increment_user_curr_connects(&self, user: &str) {
|
||||
self.user_stats
|
||||
.entry(user.to_string())
|
||||
.or_default()
|
||||
.curr_connects
|
||||
.fetch_add(1, Ordering::Relaxed);
|
||||
self.user_stats.entry(user.to_string()).or_default()
|
||||
.curr_connects.fetch_add(1, Ordering::Relaxed);
|
||||
}
|
||||
|
||||
pub fn decrement_user_curr_connects(&self, user: &str) {
|
||||
@@ -86,47 +63,33 @@ impl Stats {
|
||||
}
|
||||
|
||||
pub fn get_user_curr_connects(&self, user: &str) -> u64 {
|
||||
self.user_stats
|
||||
.get(user)
|
||||
self.user_stats.get(user)
|
||||
.map(|s| s.curr_connects.load(Ordering::Relaxed))
|
||||
.unwrap_or(0)
|
||||
}
|
||||
|
||||
pub fn add_user_octets_from(&self, user: &str, bytes: u64) {
|
||||
self.user_stats
|
||||
.entry(user.to_string())
|
||||
.or_default()
|
||||
.octets_from_client
|
||||
.fetch_add(bytes, Ordering::Relaxed);
|
||||
self.user_stats.entry(user.to_string()).or_default()
|
||||
.octets_from_client.fetch_add(bytes, Ordering::Relaxed);
|
||||
}
|
||||
|
||||
pub fn add_user_octets_to(&self, user: &str, bytes: u64) {
|
||||
self.user_stats
|
||||
.entry(user.to_string())
|
||||
.or_default()
|
||||
.octets_to_client
|
||||
.fetch_add(bytes, Ordering::Relaxed);
|
||||
self.user_stats.entry(user.to_string()).or_default()
|
||||
.octets_to_client.fetch_add(bytes, Ordering::Relaxed);
|
||||
}
|
||||
|
||||
pub fn increment_user_msgs_from(&self, user: &str) {
|
||||
self.user_stats
|
||||
.entry(user.to_string())
|
||||
.or_default()
|
||||
.msgs_from_client
|
||||
.fetch_add(1, Ordering::Relaxed);
|
||||
self.user_stats.entry(user.to_string()).or_default()
|
||||
.msgs_from_client.fetch_add(1, Ordering::Relaxed);
|
||||
}
|
||||
|
||||
pub fn increment_user_msgs_to(&self, user: &str) {
|
||||
self.user_stats
|
||||
.entry(user.to_string())
|
||||
.or_default()
|
||||
.msgs_to_client
|
||||
.fetch_add(1, Ordering::Relaxed);
|
||||
self.user_stats.entry(user.to_string()).or_default()
|
||||
.msgs_to_client.fetch_add(1, Ordering::Relaxed);
|
||||
}
|
||||
|
||||
pub fn get_user_total_octets(&self, user: &str) -> u64 {
|
||||
self.user_stats
|
||||
.get(user)
|
||||
self.user_stats.get(user)
|
||||
.map(|s| {
|
||||
s.octets_from_client.load(Ordering::Relaxed) +
|
||||
s.octets_to_client.load(Ordering::Relaxed)
|
||||
@@ -141,37 +104,209 @@ impl Stats {
|
||||
}
|
||||
}
|
||||
|
||||
// Arc<Stats> Hightech Stats :D
|
||||
// ============= Replay Checker =============
|
||||
|
||||
/// Replay attack checker using LRU cache
|
||||
pub struct ReplayChecker {
|
||||
handshakes: RwLock<LruCache<Vec<u8>, ()>>,
|
||||
tls_digests: RwLock<LruCache<Vec<u8>, ()>>,
|
||||
shards: Vec<Mutex<ReplayShard>>,
|
||||
shard_mask: usize,
|
||||
window: Duration,
|
||||
checks: AtomicU64,
|
||||
hits: AtomicU64,
|
||||
additions: AtomicU64,
|
||||
cleanups: AtomicU64,
|
||||
}
|
||||
|
||||
struct ReplayEntry {
|
||||
seen_at: Instant,
|
||||
seq: u64,
|
||||
}
|
||||
|
||||
struct ReplayShard {
|
||||
cache: LruCache<Box<[u8]>, ReplayEntry>,
|
||||
queue: VecDeque<(Instant, Box<[u8]>, u64)>,
|
||||
seq_counter: u64,
|
||||
}
|
||||
|
||||
impl ReplayShard {
|
||||
fn new(cap: NonZeroUsize) -> Self {
|
||||
Self {
|
||||
cache: LruCache::new(cap),
|
||||
queue: VecDeque::with_capacity(cap.get()),
|
||||
seq_counter: 0,
|
||||
}
|
||||
}
|
||||
|
||||
fn next_seq(&mut self) -> u64 {
|
||||
self.seq_counter += 1;
|
||||
self.seq_counter
|
||||
}
|
||||
|
||||
fn cleanup(&mut self, now: Instant, window: Duration) {
|
||||
if window.is_zero() {
|
||||
return;
|
||||
}
|
||||
let cutoff = now.checked_sub(window).unwrap_or(now);
|
||||
|
||||
while let Some((ts, _, _)) = self.queue.front() {
|
||||
if *ts >= cutoff {
|
||||
break;
|
||||
}
|
||||
let (_, key, queue_seq) = self.queue.pop_front().unwrap();
|
||||
|
||||
// Use key.as_ref() to get &[u8] — avoids Borrow<Q> ambiguity
|
||||
// between Borrow<[u8]> and Borrow<Box<[u8]>>
|
||||
if let Some(entry) = self.cache.peek(key.as_ref()) {
|
||||
if entry.seq == queue_seq {
|
||||
self.cache.pop(key.as_ref());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn check(&mut self, key: &[u8], now: Instant, window: Duration) -> bool {
|
||||
self.cleanup(now, window);
|
||||
// key is &[u8], resolves Q=[u8] via Box<[u8]>: Borrow<[u8]>
|
||||
self.cache.get(key).is_some()
|
||||
}
|
||||
|
||||
fn add(&mut self, key: &[u8], now: Instant, window: Duration) {
|
||||
self.cleanup(now, window);
|
||||
|
||||
let seq = self.next_seq();
|
||||
let boxed_key: Box<[u8]> = key.into();
|
||||
|
||||
self.cache.put(boxed_key.clone(), ReplayEntry { seen_at: now, seq });
|
||||
self.queue.push_back((now, boxed_key, seq));
|
||||
}
|
||||
|
||||
fn len(&self) -> usize {
|
||||
self.cache.len()
|
||||
}
|
||||
}
|
||||
|
||||
impl ReplayChecker {
|
||||
pub fn new(capacity: usize) -> Self {
|
||||
let cap = NonZeroUsize::new(capacity.max(1)).unwrap();
|
||||
pub fn new(total_capacity: usize, window: Duration) -> Self {
|
||||
let num_shards = 64;
|
||||
let shard_capacity = (total_capacity / num_shards).max(1);
|
||||
let cap = NonZeroUsize::new(shard_capacity).unwrap();
|
||||
|
||||
let mut shards = Vec::with_capacity(num_shards);
|
||||
for _ in 0..num_shards {
|
||||
shards.push(Mutex::new(ReplayShard::new(cap)));
|
||||
}
|
||||
|
||||
Self {
|
||||
handshakes: RwLock::new(LruCache::new(cap)),
|
||||
tls_digests: RwLock::new(LruCache::new(cap)),
|
||||
shards,
|
||||
shard_mask: num_shards - 1,
|
||||
window,
|
||||
checks: AtomicU64::new(0),
|
||||
hits: AtomicU64::new(0),
|
||||
additions: AtomicU64::new(0),
|
||||
cleanups: AtomicU64::new(0),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn check_handshake(&self, data: &[u8]) -> bool {
|
||||
self.handshakes.read().contains(&data.to_vec())
|
||||
fn get_shard_idx(&self, key: &[u8]) -> usize {
|
||||
let mut hasher = DefaultHasher::new();
|
||||
key.hash(&mut hasher);
|
||||
(hasher.finish() as usize) & self.shard_mask
|
||||
}
|
||||
|
||||
pub fn add_handshake(&self, data: &[u8]) {
|
||||
self.handshakes.write().put(data.to_vec(), ());
|
||||
fn check(&self, data: &[u8]) -> bool {
|
||||
self.checks.fetch_add(1, Ordering::Relaxed);
|
||||
let idx = self.get_shard_idx(data);
|
||||
let mut shard = self.shards[idx].lock();
|
||||
let found = shard.check(data, Instant::now(), self.window);
|
||||
if found {
|
||||
self.hits.fetch_add(1, Ordering::Relaxed);
|
||||
}
|
||||
found
|
||||
}
|
||||
|
||||
pub fn check_tls_digest(&self, data: &[u8]) -> bool {
|
||||
self.tls_digests.read().contains(&data.to_vec())
|
||||
fn add(&self, data: &[u8]) {
|
||||
self.additions.fetch_add(1, Ordering::Relaxed);
|
||||
let idx = self.get_shard_idx(data);
|
||||
let mut shard = self.shards[idx].lock();
|
||||
shard.add(data, Instant::now(), self.window);
|
||||
}
|
||||
|
||||
pub fn add_tls_digest(&self, data: &[u8]) {
|
||||
self.tls_digests.write().put(data.to_vec(), ());
|
||||
pub fn check_handshake(&self, data: &[u8]) -> bool { self.check(data) }
|
||||
pub fn add_handshake(&self, data: &[u8]) { self.add(data) }
|
||||
pub fn check_tls_digest(&self, data: &[u8]) -> bool { self.check(data) }
|
||||
pub fn add_tls_digest(&self, data: &[u8]) { self.add(data) }
|
||||
|
||||
pub fn stats(&self) -> ReplayStats {
|
||||
let mut total_entries = 0;
|
||||
let mut total_queue_len = 0;
|
||||
for shard in &self.shards {
|
||||
let s = shard.lock();
|
||||
total_entries += s.cache.len();
|
||||
total_queue_len += s.queue.len();
|
||||
}
|
||||
|
||||
ReplayStats {
|
||||
total_entries,
|
||||
total_queue_len,
|
||||
total_checks: self.checks.load(Ordering::Relaxed),
|
||||
total_hits: self.hits.load(Ordering::Relaxed),
|
||||
total_additions: self.additions.load(Ordering::Relaxed),
|
||||
total_cleanups: self.cleanups.load(Ordering::Relaxed),
|
||||
num_shards: self.shards.len(),
|
||||
window_secs: self.window.as_secs(),
|
||||
}
|
||||
}
|
||||
|
||||
pub async fn run_periodic_cleanup(&self) {
|
||||
let interval = if self.window.as_secs() > 60 {
|
||||
Duration::from_secs(30)
|
||||
} else {
|
||||
Duration::from_secs(self.window.as_secs().max(1) / 2)
|
||||
};
|
||||
|
||||
loop {
|
||||
tokio::time::sleep(interval).await;
|
||||
|
||||
let now = Instant::now();
|
||||
let mut cleaned = 0usize;
|
||||
|
||||
for shard_mutex in &self.shards {
|
||||
let mut shard = shard_mutex.lock();
|
||||
let before = shard.len();
|
||||
shard.cleanup(now, self.window);
|
||||
let after = shard.len();
|
||||
cleaned += before.saturating_sub(after);
|
||||
}
|
||||
|
||||
self.cleanups.fetch_add(1, Ordering::Relaxed);
|
||||
|
||||
if cleaned > 0 {
|
||||
debug!(cleaned = cleaned, "Replay checker: periodic cleanup");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct ReplayStats {
|
||||
pub total_entries: usize,
|
||||
pub total_queue_len: usize,
|
||||
pub total_checks: u64,
|
||||
pub total_hits: u64,
|
||||
pub total_additions: u64,
|
||||
pub total_cleanups: u64,
|
||||
pub num_shards: usize,
|
||||
pub window_secs: u64,
|
||||
}
|
||||
|
||||
impl ReplayStats {
|
||||
pub fn hit_rate(&self) -> f64 {
|
||||
if self.total_checks == 0 { 0.0 }
|
||||
else { (self.total_hits as f64 / self.total_checks as f64) * 100.0 }
|
||||
}
|
||||
|
||||
pub fn ghost_ratio(&self) -> f64 {
|
||||
if self.total_entries == 0 { 0.0 }
|
||||
else { self.total_queue_len as f64 / self.total_entries as f64 }
|
||||
}
|
||||
}
|
||||
|
||||
@@ -182,42 +317,60 @@ mod tests {
|
||||
#[test]
|
||||
fn test_stats_shared_counters() {
|
||||
let stats = Arc::new(Stats::new());
|
||||
|
||||
// Симулируем использование из разных "задач"
|
||||
let stats1 = Arc::clone(&stats);
|
||||
let stats2 = Arc::clone(&stats);
|
||||
|
||||
stats1.increment_connects_all();
|
||||
stats2.increment_connects_all();
|
||||
stats1.increment_connects_all();
|
||||
|
||||
// Все инкременты должны быть видны
|
||||
stats.increment_connects_all();
|
||||
stats.increment_connects_all();
|
||||
stats.increment_connects_all();
|
||||
assert_eq!(stats.get_connects_all(), 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_user_stats_shared() {
|
||||
let stats = Arc::new(Stats::new());
|
||||
|
||||
let stats1 = Arc::clone(&stats);
|
||||
let stats2 = Arc::clone(&stats);
|
||||
|
||||
stats1.add_user_octets_from("user1", 100);
|
||||
stats2.add_user_octets_from("user1", 200);
|
||||
stats1.add_user_octets_to("user1", 50);
|
||||
|
||||
assert_eq!(stats.get_user_total_octets("user1"), 350);
|
||||
fn test_replay_checker_basic() {
|
||||
let checker = ReplayChecker::new(100, Duration::from_secs(60));
|
||||
assert!(!checker.check_handshake(b"test1"));
|
||||
checker.add_handshake(b"test1");
|
||||
assert!(checker.check_handshake(b"test1"));
|
||||
assert!(!checker.check_handshake(b"test2"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_concurrent_user_connects() {
|
||||
let stats = Arc::new(Stats::new());
|
||||
fn test_replay_checker_duplicate_add() {
|
||||
let checker = ReplayChecker::new(100, Duration::from_secs(60));
|
||||
checker.add_handshake(b"dup");
|
||||
checker.add_handshake(b"dup");
|
||||
assert!(checker.check_handshake(b"dup"));
|
||||
}
|
||||
|
||||
stats.increment_user_curr_connects("user1");
|
||||
stats.increment_user_curr_connects("user1");
|
||||
assert_eq!(stats.get_user_curr_connects("user1"), 2);
|
||||
#[test]
|
||||
fn test_replay_checker_expiration() {
|
||||
let checker = ReplayChecker::new(100, Duration::from_millis(50));
|
||||
checker.add_handshake(b"expire");
|
||||
assert!(checker.check_handshake(b"expire"));
|
||||
std::thread::sleep(Duration::from_millis(100));
|
||||
assert!(!checker.check_handshake(b"expire"));
|
||||
}
|
||||
|
||||
stats.decrement_user_curr_connects("user1");
|
||||
assert_eq!(stats.get_user_curr_connects("user1"), 1);
|
||||
#[test]
|
||||
fn test_replay_checker_stats() {
|
||||
let checker = ReplayChecker::new(100, Duration::from_secs(60));
|
||||
checker.add_handshake(b"k1");
|
||||
checker.add_handshake(b"k2");
|
||||
checker.check_handshake(b"k1");
|
||||
checker.check_handshake(b"k3");
|
||||
let stats = checker.stats();
|
||||
assert_eq!(stats.total_additions, 2);
|
||||
assert_eq!(stats.total_checks, 2);
|
||||
assert_eq!(stats.total_hits, 1);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_replay_checker_many_keys() {
|
||||
let checker = ReplayChecker::new(1000, Duration::from_secs(60));
|
||||
for i in 0..500u32 {
|
||||
checker.add(&i.to_le_bytes());
|
||||
}
|
||||
for i in 0..500u32 {
|
||||
assert!(checker.check(&i.to_le_bytes()));
|
||||
}
|
||||
assert_eq!(checker.stats().total_entries, 500);
|
||||
}
|
||||
}
|
||||
@@ -11,8 +11,9 @@ use std::sync::Arc;
|
||||
|
||||
// ============= Configuration =============
|
||||
|
||||
/// Default buffer size (64KB - good for MTProto)
|
||||
pub const DEFAULT_BUFFER_SIZE: usize = 64 * 1024;
|
||||
/// Default buffer size
|
||||
/// CHANGED: Reduced from 64KB to 16KB to match TLS record size and prevent bufferbloat.
|
||||
pub const DEFAULT_BUFFER_SIZE: usize = 16 * 1024;
|
||||
|
||||
/// Default maximum number of pooled buffers
|
||||
pub const DEFAULT_MAX_BUFFERS: usize = 1024;
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -5,8 +5,10 @@
|
||||
|
||||
use bytes::{Bytes, BytesMut};
|
||||
use std::io::Result;
|
||||
use std::sync::Arc;
|
||||
|
||||
use crate::protocol::constants::ProtoTag;
|
||||
use crate::crypto::SecureRandom;
|
||||
|
||||
// ============= Frame Types =============
|
||||
|
||||
@@ -147,11 +149,11 @@ pub trait FrameCodec: Send + Sync {
|
||||
// ============= Codec Factory =============
|
||||
|
||||
/// Create a frame codec for the given protocol tag
|
||||
pub fn create_codec(proto_tag: ProtoTag) -> Box<dyn FrameCodec> {
|
||||
pub fn create_codec(proto_tag: ProtoTag, rng: Arc<SecureRandom>) -> Box<dyn FrameCodec> {
|
||||
match proto_tag {
|
||||
ProtoTag::Abridged => Box::new(super::frame_codec::AbridgedCodec::new()),
|
||||
ProtoTag::Intermediate => Box::new(super::frame_codec::IntermediateCodec::new()),
|
||||
ProtoTag::Secure => Box::new(super::frame_codec::SecureCodec::new()),
|
||||
ProtoTag::Abridged => Box::new(crate::stream::frame_codec::AbridgedCodec::new()),
|
||||
ProtoTag::Intermediate => Box::new(crate::stream::frame_codec::IntermediateCodec::new()),
|
||||
ProtoTag::Secure => Box::new(crate::stream::frame_codec::SecureCodec::new(rng)),
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -5,9 +5,11 @@
|
||||
|
||||
use bytes::{Bytes, BytesMut, BufMut};
|
||||
use std::io::{self, Error, ErrorKind};
|
||||
use std::sync::Arc;
|
||||
use tokio_util::codec::{Decoder, Encoder};
|
||||
|
||||
use crate::protocol::constants::ProtoTag;
|
||||
use crate::crypto::SecureRandom;
|
||||
use super::frame::{Frame, FrameMeta, FrameCodec as FrameCodecTrait};
|
||||
|
||||
// ============= Unified Codec =============
|
||||
@@ -21,14 +23,17 @@ pub struct FrameCodec {
|
||||
proto_tag: ProtoTag,
|
||||
/// Maximum allowed frame size
|
||||
max_frame_size: usize,
|
||||
/// RNG for secure padding
|
||||
rng: Arc<SecureRandom>,
|
||||
}
|
||||
|
||||
impl FrameCodec {
|
||||
/// Create a new codec for the given protocol
|
||||
pub fn new(proto_tag: ProtoTag) -> Self {
|
||||
pub fn new(proto_tag: ProtoTag, rng: Arc<SecureRandom>) -> Self {
|
||||
Self {
|
||||
proto_tag,
|
||||
max_frame_size: 16 * 1024 * 1024, // 16MB default
|
||||
rng,
|
||||
}
|
||||
}
|
||||
|
||||
@@ -64,7 +69,7 @@ impl Encoder<Frame> for FrameCodec {
|
||||
match self.proto_tag {
|
||||
ProtoTag::Abridged => encode_abridged(&frame, dst),
|
||||
ProtoTag::Intermediate => encode_intermediate(&frame, dst),
|
||||
ProtoTag::Secure => encode_secure(&frame, dst),
|
||||
ProtoTag::Secure => encode_secure(&frame, dst, &self.rng),
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -288,9 +293,7 @@ fn decode_secure(src: &mut BytesMut, max_size: usize) -> io::Result<Option<Frame
|
||||
Ok(Some(Frame::with_meta(data, meta)))
|
||||
}
|
||||
|
||||
fn encode_secure(frame: &Frame, dst: &mut BytesMut) -> io::Result<()> {
|
||||
use crate::crypto::random::SECURE_RANDOM;
|
||||
|
||||
fn encode_secure(frame: &Frame, dst: &mut BytesMut, rng: &SecureRandom) -> io::Result<()> {
|
||||
let data = &frame.data;
|
||||
|
||||
// Simple ACK: just send data
|
||||
@@ -303,10 +306,10 @@ fn encode_secure(frame: &Frame, dst: &mut BytesMut) -> io::Result<()> {
|
||||
// Generate padding to make length not divisible by 4
|
||||
let padding_len = if data.len() % 4 == 0 {
|
||||
// Add 1-3 bytes to make it non-aligned
|
||||
(SECURE_RANDOM.range(3) + 1) as usize
|
||||
(rng.range(3) + 1) as usize
|
||||
} else {
|
||||
// Already non-aligned, can add 0-3
|
||||
SECURE_RANDOM.range(4) as usize
|
||||
rng.range(4) as usize
|
||||
};
|
||||
|
||||
let total_len = data.len() + padding_len;
|
||||
@@ -321,7 +324,7 @@ fn encode_secure(frame: &Frame, dst: &mut BytesMut) -> io::Result<()> {
|
||||
dst.extend_from_slice(data);
|
||||
|
||||
if padding_len > 0 {
|
||||
let padding = SECURE_RANDOM.bytes(padding_len);
|
||||
let padding = rng.bytes(padding_len);
|
||||
dst.extend_from_slice(&padding);
|
||||
}
|
||||
|
||||
@@ -445,19 +448,21 @@ impl FrameCodecTrait for IntermediateCodec {
|
||||
/// Secure Intermediate protocol codec
|
||||
pub struct SecureCodec {
|
||||
max_frame_size: usize,
|
||||
rng: Arc<SecureRandom>,
|
||||
}
|
||||
|
||||
impl SecureCodec {
|
||||
pub fn new() -> Self {
|
||||
pub fn new(rng: Arc<SecureRandom>) -> Self {
|
||||
Self {
|
||||
max_frame_size: 16 * 1024 * 1024,
|
||||
rng,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for SecureCodec {
|
||||
fn default() -> Self {
|
||||
Self::new()
|
||||
Self::new(Arc::new(SecureRandom::new()))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -474,7 +479,7 @@ impl Encoder<Frame> for SecureCodec {
|
||||
type Error = io::Error;
|
||||
|
||||
fn encode(&mut self, frame: Frame, dst: &mut BytesMut) -> Result<(), Self::Error> {
|
||||
encode_secure(&frame, dst)
|
||||
encode_secure(&frame, dst, &self.rng)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -485,7 +490,7 @@ impl FrameCodecTrait for SecureCodec {
|
||||
|
||||
fn encode(&self, frame: &Frame, dst: &mut BytesMut) -> io::Result<usize> {
|
||||
let before = dst.len();
|
||||
encode_secure(frame, dst)?;
|
||||
encode_secure(frame, dst, &self.rng)?;
|
||||
Ok(dst.len() - before)
|
||||
}
|
||||
|
||||
@@ -506,6 +511,8 @@ mod tests {
|
||||
use tokio_util::codec::{FramedRead, FramedWrite};
|
||||
use tokio::io::duplex;
|
||||
use futures::{SinkExt, StreamExt};
|
||||
use crate::crypto::SecureRandom;
|
||||
use std::sync::Arc;
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_framed_abridged() {
|
||||
@@ -541,8 +548,8 @@ mod tests {
|
||||
async fn test_framed_secure() {
|
||||
let (client, server) = duplex(4096);
|
||||
|
||||
let mut writer = FramedWrite::new(client, SecureCodec::new());
|
||||
let mut reader = FramedRead::new(server, SecureCodec::new());
|
||||
let mut writer = FramedWrite::new(client, SecureCodec::new(Arc::new(SecureRandom::new())));
|
||||
let mut reader = FramedRead::new(server, SecureCodec::new(Arc::new(SecureRandom::new())));
|
||||
|
||||
let original = Bytes::from_static(&[1, 2, 3, 4, 5, 6, 7, 8]);
|
||||
let frame = Frame::new(original.clone());
|
||||
@@ -557,8 +564,8 @@ mod tests {
|
||||
for proto_tag in [ProtoTag::Abridged, ProtoTag::Intermediate, ProtoTag::Secure] {
|
||||
let (client, server) = duplex(4096);
|
||||
|
||||
let mut writer = FramedWrite::new(client, FrameCodec::new(proto_tag));
|
||||
let mut reader = FramedRead::new(server, FrameCodec::new(proto_tag));
|
||||
let mut writer = FramedWrite::new(client, FrameCodec::new(proto_tag, Arc::new(SecureRandom::new())));
|
||||
let mut reader = FramedRead::new(server, FrameCodec::new(proto_tag, Arc::new(SecureRandom::new())));
|
||||
|
||||
// Use 4-byte aligned data for abridged compatibility
|
||||
let original = Bytes::from_static(&[1, 2, 3, 4, 5, 6, 7, 8]);
|
||||
@@ -607,7 +614,7 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_frame_too_large() {
|
||||
let mut codec = FrameCodec::new(ProtoTag::Intermediate)
|
||||
let mut codec = FrameCodec::new(ProtoTag::Intermediate, Arc::new(SecureRandom::new()))
|
||||
.with_max_frame_size(100);
|
||||
|
||||
// Create a "frame" that claims to be very large
|
||||
|
||||
@@ -4,8 +4,8 @@ use bytes::{Bytes, BytesMut};
|
||||
use std::io::{Error, ErrorKind, Result};
|
||||
use tokio::io::{AsyncRead, AsyncWrite, AsyncReadExt, AsyncWriteExt};
|
||||
use crate::protocol::constants::*;
|
||||
use crate::crypto::crc32;
|
||||
use crate::crypto::random::SECURE_RANDOM;
|
||||
use crate::crypto::{crc32, SecureRandom};
|
||||
use std::sync::Arc;
|
||||
use super::traits::{FrameMeta, LayeredStream};
|
||||
|
||||
// ============= Abridged (Compact) Frame =============
|
||||
@@ -251,11 +251,12 @@ impl<R> LayeredStream<R> for SecureIntermediateFrameReader<R> {
|
||||
/// Writer for secure intermediate MTProto framing
|
||||
pub struct SecureIntermediateFrameWriter<W> {
|
||||
upstream: W,
|
||||
rng: Arc<SecureRandom>,
|
||||
}
|
||||
|
||||
impl<W> SecureIntermediateFrameWriter<W> {
|
||||
pub fn new(upstream: W) -> Self {
|
||||
Self { upstream }
|
||||
pub fn new(upstream: W, rng: Arc<SecureRandom>) -> Self {
|
||||
Self { upstream, rng }
|
||||
}
|
||||
}
|
||||
|
||||
@@ -267,8 +268,8 @@ impl<W: AsyncWrite + Unpin> SecureIntermediateFrameWriter<W> {
|
||||
}
|
||||
|
||||
// Add random padding (0-3 bytes)
|
||||
let padding_len = SECURE_RANDOM.range(4);
|
||||
let padding = SECURE_RANDOM.bytes(padding_len);
|
||||
let padding_len = self.rng.range(4);
|
||||
let padding = self.rng.bytes(padding_len);
|
||||
|
||||
let total_len = data.len() + padding_len;
|
||||
let len_bytes = (total_len as u32).to_le_bytes();
|
||||
@@ -454,11 +455,11 @@ pub enum FrameWriterKind<W> {
|
||||
}
|
||||
|
||||
impl<W: AsyncWrite + Unpin> FrameWriterKind<W> {
|
||||
pub fn new(upstream: W, proto_tag: ProtoTag) -> Self {
|
||||
pub fn new(upstream: W, proto_tag: ProtoTag, rng: Arc<SecureRandom>) -> Self {
|
||||
match proto_tag {
|
||||
ProtoTag::Abridged => FrameWriterKind::Abridged(AbridgedFrameWriter::new(upstream)),
|
||||
ProtoTag::Intermediate => FrameWriterKind::Intermediate(IntermediateFrameWriter::new(upstream)),
|
||||
ProtoTag::Secure => FrameWriterKind::SecureIntermediate(SecureIntermediateFrameWriter::new(upstream)),
|
||||
ProtoTag::Secure => FrameWriterKind::SecureIntermediate(SecureIntermediateFrameWriter::new(upstream, rng)),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -483,6 +484,8 @@ impl<W: AsyncWrite + Unpin> FrameWriterKind<W> {
|
||||
mod tests {
|
||||
use super::*;
|
||||
use tokio::io::duplex;
|
||||
use std::sync::Arc;
|
||||
use crate::crypto::SecureRandom;
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_abridged_roundtrip() {
|
||||
@@ -539,7 +542,7 @@ mod tests {
|
||||
async fn test_secure_intermediate_padding() {
|
||||
let (client, server) = duplex(1024);
|
||||
|
||||
let mut writer = SecureIntermediateFrameWriter::new(client);
|
||||
let mut writer = SecureIntermediateFrameWriter::new(client, Arc::new(SecureRandom::new()));
|
||||
let mut reader = SecureIntermediateFrameReader::new(server);
|
||||
|
||||
let data = vec![1u8, 2, 3, 4, 5, 6, 7, 8];
|
||||
@@ -572,7 +575,7 @@ mod tests {
|
||||
async fn test_frame_reader_kind() {
|
||||
let (client, server) = duplex(1024);
|
||||
|
||||
let mut writer = FrameWriterKind::new(client, ProtoTag::Intermediate);
|
||||
let mut writer = FrameWriterKind::new(client, ProtoTag::Intermediate, Arc::new(SecureRandom::new()));
|
||||
let mut reader = FrameReaderKind::new(server, ProtoTag::Intermediate);
|
||||
|
||||
let data = vec![1u8, 2, 3, 4];
|
||||
|
||||
@@ -1,17 +1,36 @@
|
||||
//! Fake TLS 1.3 stream wrappers
|
||||
//!
|
||||
//! This module provides stateful async stream wrappers that handle
|
||||
//! TLS record framing with proper partial read/write handling.
|
||||
//! This module provides stateful async stream wrappers that handle TLS record
|
||||
//! framing with proper partial read/write handling.
|
||||
//!
|
||||
//! These are "fake" TLS streams - they wrap data in valid TLS 1.3
|
||||
//! Application Data records but don't perform actual TLS encryption.
|
||||
//! The actual encryption is handled by the crypto layer underneath.
|
||||
//! These are "fake" TLS streams:
|
||||
//! - We wrap raw bytes into syntactically valid TLS 1.3 records (Application Data).
|
||||
//! - We DO NOT perform real TLS handshake/encryption.
|
||||
//! - Real crypto for MTProto is handled by the crypto layer underneath.
|
||||
//!
|
||||
//! Why do we need this?
|
||||
//! Telegram MTProto proxy "FakeTLS" mode uses a TLS-looking outer layer for
|
||||
//! domain fronting / traffic camouflage. iOS Telegram clients are known to
|
||||
//! produce slightly different TLS record sizing patterns than Android/Desktop,
|
||||
//! including records that exceed 16384 payload bytes by a small overhead.
|
||||
//!
|
||||
//! Key design principles:
|
||||
//! - Explicit state machines for all async operations
|
||||
//! - Never lose data on partial reads
|
||||
//! - Atomic TLS record formation for writes
|
||||
//! - Proper handling of all TLS record types
|
||||
//!
|
||||
//! Important nuance (Telegram FakeTLS):
|
||||
//! - The TLS spec limits "plaintext fragments" to 2^14 (16384) bytes.
|
||||
//! - However, the on-the-wire record length can exceed 16384 because TLS 1.3
|
||||
//! uses AEAD and can include tag/overhead/padding.
|
||||
//! - Telegram FakeTLS clients (notably iOS) may send Application Data records
|
||||
//! with length up to 16384 + 24 bytes. We accept that as MAX_TLS_CHUNK_SIZE.
|
||||
//!
|
||||
//! If you reject those (e.g. validate length <= 16384), you will see errors like:
|
||||
//! "TLS record too large: 16408 bytes"
|
||||
//! and uploads from iOS will break (media/file sending), while small traffic
|
||||
//! may still work.
|
||||
|
||||
use bytes::{Bytes, BytesMut, BufMut};
|
||||
use std::io::{self, Error, ErrorKind, Result};
|
||||
@@ -20,25 +39,29 @@ use std::task::{Context, Poll};
|
||||
use tokio::io::{AsyncRead, AsyncWrite, AsyncReadExt, AsyncWriteExt, ReadBuf};
|
||||
|
||||
use crate::protocol::constants::{
|
||||
TLS_VERSION, TLS_RECORD_APPLICATION, TLS_RECORD_CHANGE_CIPHER,
|
||||
TLS_RECORD_HANDSHAKE, TLS_RECORD_ALERT, MAX_TLS_RECORD_SIZE,
|
||||
TLS_VERSION,
|
||||
TLS_RECORD_APPLICATION, TLS_RECORD_CHANGE_CIPHER,
|
||||
TLS_RECORD_HANDSHAKE, TLS_RECORD_ALERT,
|
||||
MAX_TLS_CHUNK_SIZE,
|
||||
};
|
||||
use super::state::{StreamState, HeaderBuffer, YieldBuffer, WriteBuffer};
|
||||
|
||||
// ============= Constants =============
|
||||
|
||||
/// TLS record header size
|
||||
/// TLS record header size (type + version + length)
|
||||
const TLS_HEADER_SIZE: usize = 5;
|
||||
|
||||
/// Maximum TLS record payload size (16KB as per TLS spec)
|
||||
/// Maximum TLS fragment size per spec (plaintext fragment).
|
||||
/// We use this for *outgoing* chunking, because we build plain ApplicationData records.
|
||||
const MAX_TLS_PAYLOAD: usize = 16384;
|
||||
|
||||
/// Maximum pending write buffer
|
||||
/// Maximum pending write buffer for one record remainder.
|
||||
/// Note: we never queue unlimited amount of data here; state holds at most one record.
|
||||
const MAX_PENDING_WRITE: usize = 64 * 1024;
|
||||
|
||||
// ============= TLS Record Types =============
|
||||
|
||||
/// Parsed TLS record header
|
||||
/// Parsed TLS record header (5 bytes)
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
struct TlsRecordHeader {
|
||||
/// Record type (0x17 = Application Data, 0x14 = Change Cipher, etc.)
|
||||
@@ -50,22 +73,27 @@ struct TlsRecordHeader {
|
||||
}
|
||||
|
||||
impl TlsRecordHeader {
|
||||
/// Parse header from 5 bytes
|
||||
/// Parse header from exactly 5 bytes.
|
||||
///
|
||||
/// This currently never returns None, but is kept as Option to allow future
|
||||
/// stricter parsing rules without changing callers.
|
||||
fn parse(header: &[u8; 5]) -> Option<Self> {
|
||||
let record_type = header[0];
|
||||
let version = [header[1], header[2]];
|
||||
let length = u16::from_be_bytes([header[3], header[4]]);
|
||||
|
||||
Some(Self {
|
||||
record_type,
|
||||
version,
|
||||
length,
|
||||
})
|
||||
Some(Self { record_type, version, length })
|
||||
}
|
||||
|
||||
/// Validate the header
|
||||
/// Validate the header.
|
||||
///
|
||||
/// Nuances:
|
||||
/// - We accept TLS 1.0 header version for ClientHello-like records (0x03 0x01),
|
||||
/// and TLS 1.2/1.3 style version bytes for the rest (we use TLS_VERSION = 0x03 0x03).
|
||||
/// - For Application Data, Telegram FakeTLS may send payload length up to
|
||||
/// MAX_TLS_CHUNK_SIZE (16384 + 24).
|
||||
/// - For other record types we keep stricter bounds to avoid memory abuse.
|
||||
fn validate(&self) -> Result<()> {
|
||||
// Check version (accept TLS 1.0 for ClientHello, TLS 1.2/1.3 for others)
|
||||
// Version: accept TLS 1.0 header (ClientHello quirk) and TLS_VERSION (0x0303).
|
||||
if self.version != [0x03, 0x01] && self.version != TLS_VERSION {
|
||||
return Err(Error::new(
|
||||
ErrorKind::InvalidData,
|
||||
@@ -73,27 +101,36 @@ impl TlsRecordHeader {
|
||||
));
|
||||
}
|
||||
|
||||
// Check length
|
||||
if self.length as usize > MAX_TLS_RECORD_SIZE {
|
||||
let len = self.length as usize;
|
||||
|
||||
// Length checks depend on record type.
|
||||
// Telegram FakeTLS: ApplicationData length may be 16384 + 24.
|
||||
match self.record_type {
|
||||
TLS_RECORD_APPLICATION => {
|
||||
if len > MAX_TLS_CHUNK_SIZE {
|
||||
return Err(Error::new(
|
||||
ErrorKind::InvalidData,
|
||||
format!("TLS record too large: {} bytes", self.length),
|
||||
format!("TLS record too large: {} bytes (max {})", len, MAX_TLS_CHUNK_SIZE),
|
||||
));
|
||||
}
|
||||
}
|
||||
|
||||
// ChangeCipherSpec/Alert/Handshake should never be that large for our usage
|
||||
// (post-handshake we don't expect Handshake at all).
|
||||
// Keep strict to reduce attack surface.
|
||||
_ => {
|
||||
if len > MAX_TLS_PAYLOAD {
|
||||
return Err(Error::new(
|
||||
ErrorKind::InvalidData,
|
||||
format!("TLS control record too large: {} bytes (max {})", len, MAX_TLS_PAYLOAD),
|
||||
));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Check if this is an application data record
|
||||
fn is_application_data(&self) -> bool {
|
||||
self.record_type == TLS_RECORD_APPLICATION
|
||||
}
|
||||
|
||||
/// Check if this is a change cipher spec record (should be skipped)
|
||||
fn is_change_cipher_spec(&self) -> bool {
|
||||
self.record_type == TLS_RECORD_CHANGE_CIPHER
|
||||
}
|
||||
|
||||
/// Build header bytes
|
||||
fn to_bytes(&self) -> [u8; 5] {
|
||||
[
|
||||
@@ -120,25 +157,20 @@ enum TlsReaderState {
|
||||
header: HeaderBuffer<TLS_HEADER_SIZE>,
|
||||
},
|
||||
|
||||
/// Reading the TLS record body
|
||||
/// Reading the TLS record body (payload)
|
||||
ReadingBody {
|
||||
/// Parsed record type
|
||||
record_type: u8,
|
||||
/// Total body length
|
||||
length: usize,
|
||||
/// Buffer for body data
|
||||
buffer: BytesMut,
|
||||
},
|
||||
|
||||
/// Have decrypted data ready to yield to caller
|
||||
/// Have buffered data ready to yield to caller
|
||||
Yielding {
|
||||
/// Buffer containing data to yield
|
||||
buffer: YieldBuffer,
|
||||
},
|
||||
|
||||
/// Stream encountered an error and cannot be used
|
||||
Poisoned {
|
||||
/// The error that caused poisoning
|
||||
error: Option<io::Error>,
|
||||
},
|
||||
}
|
||||
@@ -165,12 +197,13 @@ impl StreamState for TlsReaderState {
|
||||
|
||||
// ============= FakeTlsReader =============
|
||||
|
||||
/// Reader that unwraps TLS 1.3 records with proper state machine
|
||||
/// Reader that unwraps TLS records (FakeTLS).
|
||||
///
|
||||
/// This reader handles partial reads correctly by maintaining internal state
|
||||
/// and never losing any data that has been read from upstream.
|
||||
/// This wrapper is responsible ONLY for TLS record framing and skipping
|
||||
/// non-data records (like CCS). It does not decrypt TLS: payload bytes are passed
|
||||
/// as-is to upper layers (crypto stream).
|
||||
///
|
||||
/// # State Machine
|
||||
/// State machine overview:
|
||||
///
|
||||
/// ┌──────────┐ ┌───────────────┐
|
||||
/// │ Idle │ -----------------> │ ReadingHeader │
|
||||
@@ -178,103 +211,69 @@ impl StreamState for TlsReaderState {
|
||||
/// ▲ │
|
||||
/// │ header complete
|
||||
/// │ │
|
||||
/// │ │
|
||||
/// │ ▼
|
||||
/// │ ┌───────────────┐
|
||||
/// │ skip record │ ReadingBody │
|
||||
/// │ <-------- (CCS) -------- │ │
|
||||
/// │ └───────┬───────┘
|
||||
/// │ │
|
||||
/// │ body complete
|
||||
/// │ drained │
|
||||
/// │ <-----------------┐ │
|
||||
/// │ │ ┌───────────────┐
|
||||
/// │ └----- │ Yielding │
|
||||
/// │ ▼
|
||||
/// │ ┌───────────────┐
|
||||
/// │ │ Yielding │
|
||||
/// │ └───────────────┘
|
||||
/// │
|
||||
/// │ errors /w any state
|
||||
/// │
|
||||
/// │ errors / w any state
|
||||
/// ▼
|
||||
/// ┌───────────────────────────────────────────────┐
|
||||
/// │ Poisoned │
|
||||
/// └───────────────────────────────────────────────┘
|
||||
///
|
||||
/// NOTE: We must correctly handle partial reads from upstream:
|
||||
/// - do not assume header arrives in one poll
|
||||
/// - do not assume body arrives in one poll
|
||||
/// - never lose already-read bytes
|
||||
pub struct FakeTlsReader<R> {
|
||||
/// Upstream reader
|
||||
upstream: R,
|
||||
/// Current state
|
||||
state: TlsReaderState,
|
||||
}
|
||||
|
||||
impl<R> FakeTlsReader<R> {
|
||||
/// Create new fake TLS reader
|
||||
pub fn new(upstream: R) -> Self {
|
||||
Self {
|
||||
upstream,
|
||||
state: TlsReaderState::Idle,
|
||||
}
|
||||
Self { upstream, state: TlsReaderState::Idle }
|
||||
}
|
||||
|
||||
/// Get reference to upstream
|
||||
pub fn get_ref(&self) -> &R {
|
||||
&self.upstream
|
||||
}
|
||||
pub fn get_ref(&self) -> &R { &self.upstream }
|
||||
pub fn get_mut(&mut self) -> &mut R { &mut self.upstream }
|
||||
pub fn into_inner(self) -> R { self.upstream }
|
||||
|
||||
/// Get mutable reference to upstream
|
||||
pub fn get_mut(&mut self) -> &mut R {
|
||||
&mut self.upstream
|
||||
}
|
||||
pub fn is_poisoned(&self) -> bool { self.state.is_poisoned() }
|
||||
pub fn state_name(&self) -> &'static str { self.state.state_name() }
|
||||
|
||||
/// Consume and return upstream
|
||||
pub fn into_inner(self) -> R {
|
||||
self.upstream
|
||||
}
|
||||
|
||||
/// Check if stream is in poisoned state
|
||||
pub fn is_poisoned(&self) -> bool {
|
||||
self.state.is_poisoned()
|
||||
}
|
||||
|
||||
/// Get current state name (for debugging)
|
||||
pub fn state_name(&self) -> &'static str {
|
||||
self.state.state_name()
|
||||
}
|
||||
|
||||
/// Transition to poisoned state
|
||||
fn poison(&mut self, error: io::Error) {
|
||||
self.state = TlsReaderState::Poisoned { error: Some(error) };
|
||||
}
|
||||
|
||||
/// Take error from poisoned state
|
||||
fn take_poison_error(&mut self) -> io::Error {
|
||||
match &mut self.state {
|
||||
TlsReaderState::Poisoned { error } => {
|
||||
error.take().unwrap_or_else(|| {
|
||||
TlsReaderState::Poisoned { error } => error.take().unwrap_or_else(|| {
|
||||
io::Error::new(ErrorKind::Other, "stream previously poisoned")
|
||||
})
|
||||
}
|
||||
}),
|
||||
_ => io::Error::new(ErrorKind::Other, "stream not poisoned"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Result of polling for header completion
|
||||
enum HeaderPollResult {
|
||||
/// Need more data
|
||||
Pending,
|
||||
/// EOF at record boundary (clean close)
|
||||
Eof,
|
||||
/// Header complete, parsed successfully
|
||||
Complete(TlsRecordHeader),
|
||||
/// Error occurred
|
||||
Error(io::Error),
|
||||
}
|
||||
|
||||
/// Result of polling for body completion
|
||||
enum BodyPollResult {
|
||||
/// Need more data
|
||||
Pending,
|
||||
/// Body complete
|
||||
Complete(Bytes),
|
||||
/// Error occurred
|
||||
Error(io::Error),
|
||||
}
|
||||
|
||||
@@ -291,7 +290,7 @@ impl<R: AsyncRead + Unpin> AsyncRead for FakeTlsReader<R> {
|
||||
let state = std::mem::replace(&mut this.state, TlsReaderState::Idle);
|
||||
|
||||
match state {
|
||||
// Poisoned state - return error
|
||||
// Poisoned state: always return the stored error
|
||||
TlsReaderState::Poisoned { error } => {
|
||||
this.state = TlsReaderState::Poisoned { error: None };
|
||||
let err = error.unwrap_or_else(|| {
|
||||
@@ -300,20 +299,18 @@ impl<R: AsyncRead + Unpin> AsyncRead for FakeTlsReader<R> {
|
||||
return Poll::Ready(Err(err));
|
||||
}
|
||||
|
||||
// Have buffered data to yield
|
||||
// Yield buffered plaintext to caller
|
||||
TlsReaderState::Yielding { mut buffer } => {
|
||||
if buf.remaining() == 0 {
|
||||
this.state = TlsReaderState::Yielding { buffer };
|
||||
return Poll::Ready(Ok(()));
|
||||
}
|
||||
|
||||
// Copy as much as possible to output
|
||||
let to_copy = buffer.remaining().min(buf.remaining());
|
||||
let dst = buf.initialize_unfilled_to(to_copy);
|
||||
let copied = buffer.copy_to(dst);
|
||||
buf.advance(copied);
|
||||
|
||||
// If buffer is drained, transition to Idle
|
||||
if buffer.is_empty() {
|
||||
this.state = TlsReaderState::Idle;
|
||||
} else {
|
||||
@@ -323,23 +320,21 @@ impl<R: AsyncRead + Unpin> AsyncRead for FakeTlsReader<R> {
|
||||
return Poll::Ready(Ok(()));
|
||||
}
|
||||
|
||||
// Ready to read a new TLS record
|
||||
// Start reading new record
|
||||
TlsReaderState::Idle => {
|
||||
if buf.remaining() == 0 {
|
||||
this.state = TlsReaderState::Idle;
|
||||
return Poll::Ready(Ok(()));
|
||||
}
|
||||
|
||||
// Start reading header
|
||||
this.state = TlsReaderState::ReadingHeader {
|
||||
header: HeaderBuffer::new(),
|
||||
};
|
||||
// Continue to ReadingHeader
|
||||
// loop continues and will handle ReadingHeader
|
||||
}
|
||||
|
||||
// Reading TLS record header
|
||||
// Read TLS header (5 bytes)
|
||||
TlsReaderState::ReadingHeader { mut header } => {
|
||||
// Poll to fill header
|
||||
let result = poll_read_header(&mut this.upstream, cx, &mut header);
|
||||
|
||||
match result {
|
||||
@@ -348,6 +343,7 @@ impl<R: AsyncRead + Unpin> AsyncRead for FakeTlsReader<R> {
|
||||
return Poll::Pending;
|
||||
}
|
||||
HeaderPollResult::Eof => {
|
||||
// Clean EOF at record boundary
|
||||
this.state = TlsReaderState::Idle;
|
||||
return Poll::Ready(Ok(()));
|
||||
}
|
||||
@@ -356,15 +352,12 @@ impl<R: AsyncRead + Unpin> AsyncRead for FakeTlsReader<R> {
|
||||
return Poll::Ready(Err(e));
|
||||
}
|
||||
HeaderPollResult::Complete(parsed) => {
|
||||
// Validate header
|
||||
if let Err(e) = parsed.validate() {
|
||||
this.poison(Error::new(e.kind(), e.to_string()));
|
||||
return Poll::Ready(Err(e));
|
||||
}
|
||||
|
||||
let length = parsed.length as usize;
|
||||
|
||||
// Transition to reading body
|
||||
this.state = TlsReaderState::ReadingBody {
|
||||
record_type: parsed.record_type,
|
||||
length,
|
||||
@@ -374,7 +367,7 @@ impl<R: AsyncRead + Unpin> AsyncRead for FakeTlsReader<R> {
|
||||
}
|
||||
}
|
||||
|
||||
// Reading TLS record body
|
||||
// Read TLS payload
|
||||
TlsReaderState::ReadingBody { record_type, length, mut buffer } => {
|
||||
let result = poll_read_body(&mut this.upstream, cx, &mut buffer, length);
|
||||
|
||||
@@ -388,15 +381,15 @@ impl<R: AsyncRead + Unpin> AsyncRead for FakeTlsReader<R> {
|
||||
return Poll::Ready(Err(e));
|
||||
}
|
||||
BodyPollResult::Complete(data) => {
|
||||
// Handle different record types
|
||||
match record_type {
|
||||
TLS_RECORD_CHANGE_CIPHER => {
|
||||
// Skip Change Cipher Spec, read next record
|
||||
// CCS is expected in some clients, ignore it.
|
||||
this.state = TlsReaderState::Idle;
|
||||
continue;
|
||||
}
|
||||
|
||||
TLS_RECORD_APPLICATION => {
|
||||
// Application data - yield to caller
|
||||
// This is what we actually want.
|
||||
if data.is_empty() {
|
||||
this.state = TlsReaderState::Idle;
|
||||
continue;
|
||||
@@ -405,25 +398,26 @@ impl<R: AsyncRead + Unpin> AsyncRead for FakeTlsReader<R> {
|
||||
this.state = TlsReaderState::Yielding {
|
||||
buffer: YieldBuffer::new(data),
|
||||
};
|
||||
// Continue to yield
|
||||
// loop continues and will yield immediately
|
||||
}
|
||||
|
||||
TLS_RECORD_ALERT => {
|
||||
// TLS Alert - treat as EOF
|
||||
// Treat TLS alert as EOF-like termination.
|
||||
this.state = TlsReaderState::Idle;
|
||||
return Poll::Ready(Ok(()));
|
||||
}
|
||||
|
||||
TLS_RECORD_HANDSHAKE => {
|
||||
let err = Error::new(
|
||||
ErrorKind::InvalidData,
|
||||
"unexpected TLS handshake record"
|
||||
);
|
||||
// After FakeTLS handshake is done, we do not expect any Handshake records.
|
||||
let err = Error::new(ErrorKind::InvalidData, "unexpected TLS handshake record");
|
||||
this.poison(Error::new(err.kind(), err.to_string()));
|
||||
return Poll::Ready(Err(err));
|
||||
}
|
||||
|
||||
_ => {
|
||||
let err = Error::new(
|
||||
ErrorKind::InvalidData,
|
||||
format!("unknown TLS record type: 0x{:02x}", record_type)
|
||||
format!("unknown TLS record type: 0x{:02x}", record_type),
|
||||
);
|
||||
this.poison(Error::new(err.kind(), err.to_string()));
|
||||
return Poll::Ready(Err(err));
|
||||
@@ -459,8 +453,10 @@ fn poll_read_header<R: AsyncRead + Unpin>(
|
||||
} else {
|
||||
return HeaderPollResult::Error(Error::new(
|
||||
ErrorKind::UnexpectedEof,
|
||||
format!("unexpected EOF in TLS header (got {} of 5 bytes)",
|
||||
header.as_slice().len())
|
||||
format!(
|
||||
"unexpected EOF in TLS header (got {} of 5 bytes)",
|
||||
header.as_slice().len()
|
||||
),
|
||||
));
|
||||
}
|
||||
}
|
||||
@@ -469,14 +465,10 @@ fn poll_read_header<R: AsyncRead + Unpin>(
|
||||
}
|
||||
}
|
||||
|
||||
// Parse header
|
||||
let header_bytes = *header.as_array();
|
||||
match TlsRecordHeader::parse(&header_bytes) {
|
||||
Some(h) => HeaderPollResult::Complete(h),
|
||||
None => HeaderPollResult::Error(Error::new(
|
||||
ErrorKind::InvalidData,
|
||||
"failed to parse TLS header"
|
||||
)),
|
||||
None => HeaderPollResult::Error(Error::new(ErrorKind::InvalidData, "failed to parse TLS header")),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -487,10 +479,12 @@ fn poll_read_body<R: AsyncRead + Unpin>(
|
||||
buffer: &mut BytesMut,
|
||||
target_len: usize,
|
||||
) -> BodyPollResult {
|
||||
// NOTE: This implementation uses a temporary Vec to avoid tricky borrow/lifetime
|
||||
// issues with BytesMut spare capacity and ReadBuf across polls.
|
||||
// It's safe and correct; optimization is possible if needed.
|
||||
while buffer.len() < target_len {
|
||||
let remaining = target_len - buffer.len();
|
||||
|
||||
// Read into a temporary buffer
|
||||
let mut temp = vec![0u8; remaining.min(8192)];
|
||||
let mut read_buf = ReadBuf::new(&mut temp);
|
||||
|
||||
@@ -502,8 +496,11 @@ fn poll_read_body<R: AsyncRead + Unpin>(
|
||||
if n == 0 {
|
||||
return BodyPollResult::Error(Error::new(
|
||||
ErrorKind::UnexpectedEof,
|
||||
format!("unexpected EOF in TLS body (got {} of {} bytes)",
|
||||
buffer.len(), target_len)
|
||||
format!(
|
||||
"unexpected EOF in TLS body (got {} of {} bytes)",
|
||||
buffer.len(),
|
||||
target_len
|
||||
),
|
||||
));
|
||||
}
|
||||
buffer.extend_from_slice(&temp[..n]);
|
||||
@@ -515,10 +512,9 @@ fn poll_read_body<R: AsyncRead + Unpin>(
|
||||
}
|
||||
|
||||
impl<R: AsyncRead + Unpin> FakeTlsReader<R> {
|
||||
/// Read exactly n bytes through TLS layer
|
||||
/// Read exactly n bytes through TLS layer.
|
||||
///
|
||||
/// This is a convenience method that accumulates data across
|
||||
/// multiple TLS records until exactly n bytes are available.
|
||||
/// This accumulates data across multiple TLS ApplicationData records.
|
||||
pub async fn read_exact(&mut self, n: usize) -> Result<Bytes> {
|
||||
if self.is_poisoned() {
|
||||
return Err(self.take_poison_error());
|
||||
@@ -533,7 +529,7 @@ impl<R: AsyncRead + Unpin> FakeTlsReader<R> {
|
||||
if read == 0 {
|
||||
return Err(Error::new(
|
||||
ErrorKind::UnexpectedEof,
|
||||
format!("expected {} bytes, got {}", n, result.len())
|
||||
format!("expected {} bytes, got {}", n, result.len()),
|
||||
));
|
||||
}
|
||||
|
||||
@@ -546,23 +542,19 @@ impl<R: AsyncRead + Unpin> FakeTlsReader<R> {
|
||||
|
||||
// ============= FakeTlsWriter State =============
|
||||
|
||||
/// State machine states for FakeTlsWriter
|
||||
#[derive(Debug)]
|
||||
enum TlsWriterState {
|
||||
/// Ready to accept new data
|
||||
Idle,
|
||||
|
||||
/// Writing a complete TLS record
|
||||
/// Writing a complete TLS record (header + body), possibly partially
|
||||
WritingRecord {
|
||||
/// Complete record (header + body) to write
|
||||
record: WriteBuffer,
|
||||
/// Original payload size (for return value calculation)
|
||||
payload_size: usize,
|
||||
},
|
||||
|
||||
/// Stream encountered an error and cannot be used
|
||||
Poisoned {
|
||||
/// The error that caused poisoning
|
||||
error: Option<io::Error>,
|
||||
},
|
||||
}
|
||||
@@ -587,94 +579,46 @@ impl StreamState for TlsWriterState {
|
||||
|
||||
// ============= FakeTlsWriter =============
|
||||
|
||||
/// Writer that wraps data in TLS 1.3 records with proper state machine
|
||||
/// Writer that wraps bytes into TLS 1.3 Application Data records.
|
||||
///
|
||||
/// This writer handles partial writes correctly by:
|
||||
/// - Building complete TLS records before writing
|
||||
/// - Maintaining internal state for partial record writes
|
||||
/// - Never splitting a record mid-write to upstream
|
||||
///
|
||||
/// # State Machine
|
||||
///
|
||||
/// ┌──────────┐ write ┌─────────────────┐
|
||||
/// │ Idle │ -------------> │ WritingRecord │
|
||||
/// │ │ <------------- │ │
|
||||
/// └──────────┘ complete └─────────────────┘
|
||||
/// │ │
|
||||
/// │ < errors > │
|
||||
/// │ │
|
||||
/// ┌─────────────────────────────────────────────┐
|
||||
/// │ Poisoned │
|
||||
/// └─────────────────────────────────────────────┘
|
||||
///
|
||||
/// # Record Formation
|
||||
///
|
||||
/// Data is chunked into records of at most MAX_TLS_PAYLOAD bytes.
|
||||
/// Each record has a 5-byte header prepended.
|
||||
/// We chunk outgoing data into records of <= 16384 payload bytes (MAX_TLS_PAYLOAD).
|
||||
/// We do not try to mimic AEAD overhead on the wire; Telegram clients accept it.
|
||||
/// If you want to be more camouflage-accurate later, you could add optional padding
|
||||
/// to produce records sized closer to MAX_TLS_CHUNK_SIZE.
|
||||
pub struct FakeTlsWriter<W> {
|
||||
/// Upstream writer
|
||||
upstream: W,
|
||||
/// Current state
|
||||
state: TlsWriterState,
|
||||
}
|
||||
|
||||
impl<W> FakeTlsWriter<W> {
|
||||
/// Create new fake TLS writer
|
||||
pub fn new(upstream: W) -> Self {
|
||||
Self {
|
||||
upstream,
|
||||
state: TlsWriterState::Idle,
|
||||
}
|
||||
Self { upstream, state: TlsWriterState::Idle }
|
||||
}
|
||||
|
||||
/// Get reference to upstream
|
||||
pub fn get_ref(&self) -> &W {
|
||||
&self.upstream
|
||||
}
|
||||
pub fn get_ref(&self) -> &W { &self.upstream }
|
||||
pub fn get_mut(&mut self) -> &mut W { &mut self.upstream }
|
||||
pub fn into_inner(self) -> W { self.upstream }
|
||||
|
||||
/// Get mutable reference to upstream
|
||||
pub fn get_mut(&mut self) -> &mut W {
|
||||
&mut self.upstream
|
||||
}
|
||||
pub fn is_poisoned(&self) -> bool { self.state.is_poisoned() }
|
||||
pub fn state_name(&self) -> &'static str { self.state.state_name() }
|
||||
|
||||
/// Consume and return upstream
|
||||
pub fn into_inner(self) -> W {
|
||||
self.upstream
|
||||
}
|
||||
|
||||
/// Check if stream is in poisoned state
|
||||
pub fn is_poisoned(&self) -> bool {
|
||||
self.state.is_poisoned()
|
||||
}
|
||||
|
||||
/// Get current state name (for debugging)
|
||||
pub fn state_name(&self) -> &'static str {
|
||||
self.state.state_name()
|
||||
}
|
||||
|
||||
/// Check if there's a pending record to write
|
||||
pub fn has_pending(&self) -> bool {
|
||||
matches!(&self.state, TlsWriterState::WritingRecord { record, .. } if !record.is_empty())
|
||||
}
|
||||
|
||||
/// Transition to poisoned state
|
||||
fn poison(&mut self, error: io::Error) {
|
||||
self.state = TlsWriterState::Poisoned { error: Some(error) };
|
||||
}
|
||||
|
||||
/// Take error from poisoned state
|
||||
fn take_poison_error(&mut self) -> io::Error {
|
||||
match &mut self.state {
|
||||
TlsWriterState::Poisoned { error } => {
|
||||
error.take().unwrap_or_else(|| {
|
||||
TlsWriterState::Poisoned { error } => error.take().unwrap_or_else(|| {
|
||||
io::Error::new(ErrorKind::Other, "stream previously poisoned")
|
||||
})
|
||||
}
|
||||
}),
|
||||
_ => io::Error::new(ErrorKind::Other, "stream not poisoned"),
|
||||
}
|
||||
}
|
||||
|
||||
/// Build a TLS Application Data record
|
||||
fn build_record(data: &[u8]) -> BytesMut {
|
||||
let header = TlsRecordHeader {
|
||||
record_type: TLS_RECORD_APPLICATION,
|
||||
@@ -689,18 +633,13 @@ impl<W> FakeTlsWriter<W> {
|
||||
}
|
||||
}
|
||||
|
||||
/// Result of flushing pending record
|
||||
enum FlushResult {
|
||||
/// All data flushed, returns payload size
|
||||
Complete(usize),
|
||||
/// Need to wait for upstream
|
||||
Pending,
|
||||
/// Error occurred
|
||||
Error(io::Error),
|
||||
}
|
||||
|
||||
impl<W: AsyncWrite + Unpin> FakeTlsWriter<W> {
|
||||
/// Try to flush pending record to upstream (standalone logic)
|
||||
fn poll_flush_record_inner(
|
||||
upstream: &mut W,
|
||||
cx: &mut Context<'_>,
|
||||
@@ -710,19 +649,14 @@ impl<W: AsyncWrite + Unpin> FakeTlsWriter<W> {
|
||||
let data = record.pending();
|
||||
match Pin::new(&mut *upstream).poll_write(cx, data) {
|
||||
Poll::Pending => return FlushResult::Pending,
|
||||
|
||||
Poll::Ready(Err(e)) => return FlushResult::Error(e),
|
||||
|
||||
Poll::Ready(Ok(0)) => {
|
||||
return FlushResult::Error(Error::new(
|
||||
ErrorKind::WriteZero,
|
||||
"upstream returned 0 bytes written"
|
||||
"upstream returned 0 bytes written",
|
||||
));
|
||||
}
|
||||
|
||||
Poll::Ready(Ok(n)) => {
|
||||
record.advance(n);
|
||||
}
|
||||
Poll::Ready(Ok(n)) => record.advance(n),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -738,7 +672,7 @@ impl<W: AsyncWrite + Unpin> AsyncWrite for FakeTlsWriter<W> {
|
||||
) -> Poll<Result<usize>> {
|
||||
let this = self.get_mut();
|
||||
|
||||
// Take ownership of state
|
||||
// Take ownership of state to avoid borrow conflicts.
|
||||
let state = std::mem::replace(&mut this.state, TlsWriterState::Idle);
|
||||
|
||||
match state {
|
||||
@@ -751,7 +685,7 @@ impl<W: AsyncWrite + Unpin> AsyncWrite for FakeTlsWriter<W> {
|
||||
}
|
||||
|
||||
TlsWriterState::WritingRecord { mut record, payload_size } => {
|
||||
// Continue flushing existing record
|
||||
// Finish writing previous record before accepting new bytes.
|
||||
match Self::poll_flush_record_inner(&mut this.upstream, cx, &mut record) {
|
||||
FlushResult::Pending => {
|
||||
this.state = TlsWriterState::WritingRecord { record, payload_size };
|
||||
@@ -763,7 +697,7 @@ impl<W: AsyncWrite + Unpin> AsyncWrite for FakeTlsWriter<W> {
|
||||
}
|
||||
FlushResult::Complete(_) => {
|
||||
this.state = TlsWriterState::Idle;
|
||||
// Fall through to handle new write
|
||||
// continue to accept new buf below
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -782,19 +716,18 @@ impl<W: AsyncWrite + Unpin> AsyncWrite for FakeTlsWriter<W> {
|
||||
let chunk_size = buf.len().min(MAX_TLS_PAYLOAD);
|
||||
let chunk = &buf[..chunk_size];
|
||||
|
||||
// Build the complete record
|
||||
// Build the complete record (header + payload)
|
||||
let record_data = Self::build_record(chunk);
|
||||
|
||||
// Try to write directly first
|
||||
match Pin::new(&mut this.upstream).poll_write(cx, &record_data) {
|
||||
Poll::Ready(Ok(n)) if n == record_data.len() => {
|
||||
// Complete record written
|
||||
Poll::Ready(Ok(chunk_size))
|
||||
}
|
||||
|
||||
Poll::Ready(Ok(n)) => {
|
||||
// Partial write - buffer the rest
|
||||
// Partial write of the record: store remainder.
|
||||
let mut write_buffer = WriteBuffer::with_max_size(MAX_PENDING_WRITE);
|
||||
// record_data length is <= 16389, fits MAX_PENDING_WRITE
|
||||
let _ = write_buffer.extend(&record_data[n..]);
|
||||
|
||||
this.state = TlsWriterState::WritingRecord {
|
||||
@@ -802,7 +735,7 @@ impl<W: AsyncWrite + Unpin> AsyncWrite for FakeTlsWriter<W> {
|
||||
payload_size: chunk_size,
|
||||
};
|
||||
|
||||
// We've accepted chunk_size bytes from caller
|
||||
// We have accepted chunk_size bytes from caller.
|
||||
Poll::Ready(Ok(chunk_size))
|
||||
}
|
||||
|
||||
@@ -812,7 +745,7 @@ impl<W: AsyncWrite + Unpin> AsyncWrite for FakeTlsWriter<W> {
|
||||
}
|
||||
|
||||
Poll::Pending => {
|
||||
// Buffer the entire record
|
||||
// Buffer entire record and report success for this chunk.
|
||||
let mut write_buffer = WriteBuffer::with_max_size(MAX_PENDING_WRITE);
|
||||
let _ = write_buffer.extend(&record_data);
|
||||
|
||||
@@ -821,10 +754,9 @@ impl<W: AsyncWrite + Unpin> AsyncWrite for FakeTlsWriter<W> {
|
||||
payload_size: chunk_size,
|
||||
};
|
||||
|
||||
// Wake to try again
|
||||
// Wake to retry flushing soon.
|
||||
cx.waker().wake_by_ref();
|
||||
|
||||
// We've accepted chunk_size bytes from caller
|
||||
Poll::Ready(Ok(chunk_size))
|
||||
}
|
||||
}
|
||||
@@ -833,7 +765,6 @@ impl<W: AsyncWrite + Unpin> AsyncWrite for FakeTlsWriter<W> {
|
||||
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<()>> {
|
||||
let this = self.get_mut();
|
||||
|
||||
// Take ownership of state
|
||||
let state = std::mem::replace(&mut this.state, TlsWriterState::Idle);
|
||||
|
||||
match state {
|
||||
@@ -866,48 +797,33 @@ impl<W: AsyncWrite + Unpin> AsyncWrite for FakeTlsWriter<W> {
|
||||
}
|
||||
}
|
||||
|
||||
// Flush upstream
|
||||
Pin::new(&mut this.upstream).poll_flush(cx)
|
||||
}
|
||||
|
||||
fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<()>> {
|
||||
let this = self.get_mut();
|
||||
|
||||
// Take ownership of state
|
||||
let state = std::mem::replace(&mut this.state, TlsWriterState::Idle);
|
||||
|
||||
match state {
|
||||
TlsWriterState::WritingRecord { mut record, payload_size } => {
|
||||
// Try to flush pending (best effort)
|
||||
match Self::poll_flush_record_inner(&mut this.upstream, cx, &mut record) {
|
||||
FlushResult::Pending => {
|
||||
// Can't complete flush, continue with shutdown anyway
|
||||
TlsWriterState::WritingRecord { mut record, payload_size: _ } => {
|
||||
// Best-effort flush (do not block shutdown forever).
|
||||
let _ = Self::poll_flush_record_inner(&mut this.upstream, cx, &mut record);
|
||||
this.state = TlsWriterState::Idle;
|
||||
}
|
||||
FlushResult::Error(_) => {
|
||||
// Ignore errors during shutdown
|
||||
this.state = TlsWriterState::Idle;
|
||||
}
|
||||
FlushResult::Complete(_) => {
|
||||
this.state = TlsWriterState::Idle;
|
||||
}
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
this.state = TlsWriterState::Idle;
|
||||
}
|
||||
}
|
||||
|
||||
// Shutdown upstream
|
||||
Pin::new(&mut this.upstream).poll_shutdown(cx)
|
||||
}
|
||||
}
|
||||
|
||||
impl<W: AsyncWrite + Unpin> FakeTlsWriter<W> {
|
||||
/// Write all data wrapped in TLS records (async method)
|
||||
/// Write all data wrapped in TLS records.
|
||||
///
|
||||
/// This convenience method handles chunking large data into
|
||||
/// multiple TLS records automatically.
|
||||
/// Convenience method that chunks into <= 16384 records.
|
||||
pub async fn write_all_tls(&mut self, data: &[u8]) -> Result<()> {
|
||||
let mut written = 0;
|
||||
while written < data.len() {
|
||||
|
||||
@@ -3,7 +3,11 @@
|
||||
pub mod pool;
|
||||
pub mod proxy_protocol;
|
||||
pub mod socket;
|
||||
pub mod socks;
|
||||
pub mod upstream;
|
||||
|
||||
pub use pool::ConnectionPool;
|
||||
pub use proxy_protocol::{ProxyProtocolInfo, parse_proxy_protocol};
|
||||
pub use socket::*;
|
||||
pub use socks::*;
|
||||
pub use upstream::{UpstreamManager, StartupPingResult, DcPingResult};
|
||||
@@ -1,7 +1,7 @@
|
||||
//! TCP Socket Configuration
|
||||
|
||||
use std::io::Result;
|
||||
use std::net::SocketAddr;
|
||||
use std::net::{SocketAddr, IpAddr};
|
||||
use std::time::Duration;
|
||||
use tokio::net::TcpStream;
|
||||
use socket2::{Socket, TcpKeepalive, Domain, Type, Protocol};
|
||||
@@ -30,20 +30,13 @@ pub fn configure_tcp_socket(
|
||||
socket.set_tcp_keepalive(&keepalive)?;
|
||||
}
|
||||
|
||||
// Set buffer sizes
|
||||
set_buffer_sizes(&socket, 65536, 65536)?;
|
||||
// CHANGED: Removed manual buffer size setting (was 256KB).
|
||||
// Allowing the OS kernel to handle TCP window scaling (Autotuning) is critical
|
||||
// for mobile clients to avoid bufferbloat and stalled connections during uploads.
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Set socket buffer sizes
|
||||
fn set_buffer_sizes(socket: &socket2::SockRef, recv: usize, send: usize) -> Result<()> {
|
||||
// These may fail on some systems, so we ignore errors
|
||||
let _ = socket.set_recv_buffer_size(recv);
|
||||
let _ = socket.set_send_buffer_size(send);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Configure socket for accepting client connections
|
||||
pub fn configure_client_socket(
|
||||
stream: &TcpStream,
|
||||
@@ -65,6 +58,8 @@ pub fn configure_client_socket(
|
||||
socket.set_tcp_keepalive(&keepalive)?;
|
||||
|
||||
// Set TCP user timeout (Linux only)
|
||||
// NOTE: iOS does not support TCP_USER_TIMEOUT - application-level timeout
|
||||
// is implemented in relay_bidirectional instead
|
||||
#[cfg(target_os = "linux")]
|
||||
{
|
||||
use std::os::unix::io::AsRawFd;
|
||||
@@ -93,6 +88,11 @@ pub fn set_linger_zero(stream: &TcpStream) -> Result<()> {
|
||||
|
||||
/// Create a new TCP socket for outgoing connections
|
||||
pub fn create_outgoing_socket(addr: SocketAddr) -> Result<Socket> {
|
||||
create_outgoing_socket_bound(addr, None)
|
||||
}
|
||||
|
||||
/// Create a new TCP socket for outgoing connections, optionally bound to a specific interface
|
||||
pub fn create_outgoing_socket_bound(addr: SocketAddr, bind_addr: Option<IpAddr>) -> Result<Socket> {
|
||||
let domain = if addr.is_ipv4() {
|
||||
Domain::IPV4
|
||||
} else {
|
||||
@@ -107,9 +107,16 @@ pub fn create_outgoing_socket(addr: SocketAddr) -> Result<Socket> {
|
||||
// Disable Nagle
|
||||
socket.set_nodelay(true)?;
|
||||
|
||||
if let Some(bind_ip) = bind_addr {
|
||||
let bind_sock_addr = SocketAddr::new(bind_ip, 0);
|
||||
socket.bind(&bind_sock_addr.into())?;
|
||||
debug!("Bound outgoing socket to {}", bind_ip);
|
||||
}
|
||||
|
||||
Ok(socket)
|
||||
}
|
||||
|
||||
|
||||
/// Get local address of a socket
|
||||
pub fn get_local_addr(stream: &TcpStream) -> Option<SocketAddr> {
|
||||
stream.local_addr().ok()
|
||||
|
||||
145
src/transport/socks.rs
Normal file
145
src/transport/socks.rs
Normal file
@@ -0,0 +1,145 @@
|
||||
//! SOCKS4/5 Client Implementation
|
||||
|
||||
use std::net::{IpAddr, SocketAddr};
|
||||
use tokio::io::{AsyncRead, AsyncReadExt, AsyncWrite, AsyncWriteExt};
|
||||
use tokio::net::TcpStream;
|
||||
use crate::error::{ProxyError, Result};
|
||||
|
||||
pub async fn connect_socks4(
|
||||
stream: &mut TcpStream,
|
||||
target: SocketAddr,
|
||||
user_id: Option<&str>,
|
||||
) -> Result<()> {
|
||||
let ip = match target.ip() {
|
||||
IpAddr::V4(ip) => ip,
|
||||
IpAddr::V6(_) => return Err(ProxyError::Proxy("SOCKS4 does not support IPv6".to_string())),
|
||||
};
|
||||
|
||||
let port = target.port();
|
||||
let user = user_id.unwrap_or("").as_bytes();
|
||||
|
||||
// VN (4) | CD (1) | DSTPORT (2) | DSTIP (4) | USERID (variable) | NULL (1)
|
||||
let mut buf = Vec::with_capacity(9 + user.len());
|
||||
buf.push(4); // VN
|
||||
buf.push(1); // CD (CONNECT)
|
||||
buf.extend_from_slice(&port.to_be_bytes());
|
||||
buf.extend_from_slice(&ip.octets());
|
||||
buf.extend_from_slice(user);
|
||||
buf.push(0); // NULL
|
||||
|
||||
stream.write_all(&buf).await.map_err(|e| ProxyError::Io(e))?;
|
||||
|
||||
// Response: VN (1) | CD (1) | DSTPORT (2) | DSTIP (4)
|
||||
let mut resp = [0u8; 8];
|
||||
stream.read_exact(&mut resp).await.map_err(|e| ProxyError::Io(e))?;
|
||||
|
||||
if resp[1] != 90 {
|
||||
return Err(ProxyError::Proxy(format!("SOCKS4 request rejected: code {}", resp[1])));
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub async fn connect_socks5(
|
||||
stream: &mut TcpStream,
|
||||
target: SocketAddr,
|
||||
username: Option<&str>,
|
||||
password: Option<&str>,
|
||||
) -> Result<()> {
|
||||
// 1. Auth negotiation
|
||||
// VER (1) | NMETHODS (1) | METHODS (variable)
|
||||
let mut methods = vec![0u8]; // No auth
|
||||
if username.is_some() {
|
||||
methods.push(2u8); // Username/Password
|
||||
}
|
||||
|
||||
let mut buf = vec![5u8, methods.len() as u8];
|
||||
buf.extend_from_slice(&methods);
|
||||
|
||||
stream.write_all(&buf).await.map_err(|e| ProxyError::Io(e))?;
|
||||
|
||||
let mut resp = [0u8; 2];
|
||||
stream.read_exact(&mut resp).await.map_err(|e| ProxyError::Io(e))?;
|
||||
|
||||
if resp[0] != 5 {
|
||||
return Err(ProxyError::Proxy("Invalid SOCKS5 version".to_string()));
|
||||
}
|
||||
|
||||
match resp[1] {
|
||||
0 => {}, // No auth
|
||||
2 => {
|
||||
// Username/Password auth
|
||||
if let (Some(u), Some(p)) = (username, password) {
|
||||
let u_bytes = u.as_bytes();
|
||||
let p_bytes = p.as_bytes();
|
||||
|
||||
let mut auth_buf = Vec::with_capacity(3 + u_bytes.len() + p_bytes.len());
|
||||
auth_buf.push(1); // VER
|
||||
auth_buf.push(u_bytes.len() as u8);
|
||||
auth_buf.extend_from_slice(u_bytes);
|
||||
auth_buf.push(p_bytes.len() as u8);
|
||||
auth_buf.extend_from_slice(p_bytes);
|
||||
|
||||
stream.write_all(&auth_buf).await.map_err(|e| ProxyError::Io(e))?;
|
||||
|
||||
let mut auth_resp = [0u8; 2];
|
||||
stream.read_exact(&mut auth_resp).await.map_err(|e| ProxyError::Io(e))?;
|
||||
|
||||
if auth_resp[1] != 0 {
|
||||
return Err(ProxyError::Proxy("SOCKS5 authentication failed".to_string()));
|
||||
}
|
||||
} else {
|
||||
return Err(ProxyError::Proxy("SOCKS5 server requires authentication".to_string()));
|
||||
}
|
||||
},
|
||||
_ => return Err(ProxyError::Proxy("Unsupported SOCKS5 auth method".to_string())),
|
||||
}
|
||||
|
||||
// 2. Connection request
|
||||
// VER (1) | CMD (1) | RSV (1) | ATYP (1) | DST.ADDR (variable) | DST.PORT (2)
|
||||
let mut req = vec![5u8, 1u8, 0u8]; // CONNECT
|
||||
|
||||
match target {
|
||||
SocketAddr::V4(v4) => {
|
||||
req.push(1u8); // IPv4
|
||||
req.extend_from_slice(&v4.ip().octets());
|
||||
},
|
||||
SocketAddr::V6(v6) => {
|
||||
req.push(4u8); // IPv6
|
||||
req.extend_from_slice(&v6.ip().octets());
|
||||
},
|
||||
}
|
||||
|
||||
req.extend_from_slice(&target.port().to_be_bytes());
|
||||
|
||||
stream.write_all(&req).await.map_err(|e| ProxyError::Io(e))?;
|
||||
|
||||
// Response
|
||||
let mut head = [0u8; 4];
|
||||
stream.read_exact(&mut head).await.map_err(|e| ProxyError::Io(e))?;
|
||||
|
||||
if head[1] != 0 {
|
||||
return Err(ProxyError::Proxy(format!("SOCKS5 request failed: code {}", head[1])));
|
||||
}
|
||||
|
||||
// Skip address part of response
|
||||
match head[3] {
|
||||
1 => { // IPv4
|
||||
let mut addr = [0u8; 4 + 2];
|
||||
stream.read_exact(&mut addr).await.map_err(|e| ProxyError::Io(e))?;
|
||||
},
|
||||
3 => { // Domain
|
||||
let mut len = [0u8; 1];
|
||||
stream.read_exact(&mut len).await.map_err(|e| ProxyError::Io(e))?;
|
||||
let mut addr = vec![0u8; len[0] as usize + 2];
|
||||
stream.read_exact(&mut addr).await.map_err(|e| ProxyError::Io(e))?;
|
||||
},
|
||||
4 => { // IPv6
|
||||
let mut addr = [0u8; 16 + 2];
|
||||
stream.read_exact(&mut addr).await.map_err(|e| ProxyError::Io(e))?;
|
||||
},
|
||||
_ => return Err(ProxyError::Proxy("Invalid address type in SOCKS5 response".to_string())),
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
488
src/transport/upstream.rs
Normal file
488
src/transport/upstream.rs
Normal file
@@ -0,0 +1,488 @@
|
||||
//! Upstream Management with per-DC latency-weighted selection
|
||||
|
||||
use std::net::{SocketAddr, IpAddr};
|
||||
use std::sync::Arc;
|
||||
use std::time::Duration;
|
||||
use tokio::net::TcpStream;
|
||||
use tokio::sync::RwLock;
|
||||
use tokio::time::Instant;
|
||||
use rand::Rng;
|
||||
use tracing::{debug, warn, info, trace};
|
||||
|
||||
use crate::config::{UpstreamConfig, UpstreamType};
|
||||
use crate::error::{Result, ProxyError};
|
||||
use crate::protocol::constants::{TG_DATACENTERS_V4, TG_DATACENTERS_V6, TG_DATACENTER_PORT};
|
||||
use crate::transport::socket::create_outgoing_socket_bound;
|
||||
use crate::transport::socks::{connect_socks4, connect_socks5};
|
||||
|
||||
/// Number of Telegram datacenters
|
||||
const NUM_DCS: usize = 5;
|
||||
|
||||
// ============= RTT Tracking =============
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
struct LatencyEma {
|
||||
value_ms: Option<f64>,
|
||||
alpha: f64,
|
||||
}
|
||||
|
||||
impl LatencyEma {
|
||||
const fn new(alpha: f64) -> Self {
|
||||
Self { value_ms: None, alpha }
|
||||
}
|
||||
|
||||
fn update(&mut self, sample_ms: f64) {
|
||||
self.value_ms = Some(match self.value_ms {
|
||||
None => sample_ms,
|
||||
Some(prev) => prev * (1.0 - self.alpha) + sample_ms * self.alpha,
|
||||
});
|
||||
}
|
||||
|
||||
fn get(&self) -> Option<f64> {
|
||||
self.value_ms
|
||||
}
|
||||
}
|
||||
|
||||
// ============= Upstream State =============
|
||||
|
||||
#[derive(Debug)]
|
||||
struct UpstreamState {
|
||||
config: UpstreamConfig,
|
||||
healthy: bool,
|
||||
fails: u32,
|
||||
last_check: std::time::Instant,
|
||||
/// Per-DC latency EMA (index 0 = DC1, index 4 = DC5)
|
||||
dc_latency: [LatencyEma; NUM_DCS],
|
||||
}
|
||||
|
||||
impl UpstreamState {
|
||||
fn new(config: UpstreamConfig) -> Self {
|
||||
Self {
|
||||
config,
|
||||
healthy: true,
|
||||
fails: 0,
|
||||
last_check: std::time::Instant::now(),
|
||||
dc_latency: [LatencyEma::new(0.3); NUM_DCS],
|
||||
}
|
||||
}
|
||||
|
||||
/// Map DC index to latency array slot (0..NUM_DCS).
|
||||
///
|
||||
/// Matches the C implementation's `mf_cluster_lookup` behavior:
|
||||
/// - Standard DCs ±1..±5 → direct mapping to array index 0..4
|
||||
/// - Unknown DCs (CDN, media, etc.) → default DC slot (index 1 = DC 2)
|
||||
/// This matches Telegram's `default 2;` in proxy-multi.conf.
|
||||
/// - There is NO modular arithmetic in the C implementation.
|
||||
fn dc_array_idx(dc_idx: i16) -> Option<usize> {
|
||||
let abs_dc = dc_idx.unsigned_abs() as usize;
|
||||
if abs_dc == 0 {
|
||||
return None;
|
||||
}
|
||||
if abs_dc >= 1 && abs_dc <= NUM_DCS {
|
||||
Some(abs_dc - 1)
|
||||
} else {
|
||||
// Unknown DC → default cluster (DC 2, index 1)
|
||||
// Same as C: mf_cluster_lookup returns default_cluster
|
||||
Some(1)
|
||||
}
|
||||
}
|
||||
|
||||
/// Get latency for a specific DC, falling back to average across all known DCs
|
||||
fn effective_latency(&self, dc_idx: Option<i16>) -> Option<f64> {
|
||||
// Try DC-specific latency first
|
||||
if let Some(di) = dc_idx.and_then(Self::dc_array_idx) {
|
||||
if let Some(ms) = self.dc_latency[di].get() {
|
||||
return Some(ms);
|
||||
}
|
||||
}
|
||||
|
||||
// Fallback: average of all known DC latencies
|
||||
let (sum, count) = self.dc_latency.iter()
|
||||
.filter_map(|l| l.get())
|
||||
.fold((0.0, 0u32), |(s, c), v| (s + v, c + 1));
|
||||
|
||||
if count > 0 { Some(sum / count as f64) } else { None }
|
||||
}
|
||||
}
|
||||
|
||||
/// Result of a single DC ping
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct DcPingResult {
|
||||
pub dc_idx: usize,
|
||||
pub dc_addr: SocketAddr,
|
||||
pub rtt_ms: Option<f64>,
|
||||
pub error: Option<String>,
|
||||
}
|
||||
|
||||
/// Result of startup ping for one upstream
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct StartupPingResult {
|
||||
pub results: Vec<DcPingResult>,
|
||||
pub upstream_name: String,
|
||||
}
|
||||
|
||||
// ============= Upstream Manager =============
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct UpstreamManager {
|
||||
upstreams: Arc<RwLock<Vec<UpstreamState>>>,
|
||||
}
|
||||
|
||||
impl UpstreamManager {
|
||||
pub fn new(configs: Vec<UpstreamConfig>) -> Self {
|
||||
let states = configs.into_iter()
|
||||
.filter(|c| c.enabled)
|
||||
.map(UpstreamState::new)
|
||||
.collect();
|
||||
|
||||
Self {
|
||||
upstreams: Arc::new(RwLock::new(states)),
|
||||
}
|
||||
}
|
||||
|
||||
/// Select upstream using latency-weighted random selection.
|
||||
///
|
||||
/// `effective_weight = config_weight × latency_factor`
|
||||
///
|
||||
/// where `latency_factor = 1000 / latency_ms` if latency is known,
|
||||
/// or `1.0` if no latency data is available.
|
||||
///
|
||||
/// This means a 50ms upstream gets factor 20, a 200ms upstream gets
|
||||
/// factor 5 — the faster route is 4× more likely to be chosen
|
||||
/// (all else being equal).
|
||||
async fn select_upstream(&self, dc_idx: Option<i16>) -> Option<usize> {
|
||||
let upstreams = self.upstreams.read().await;
|
||||
if upstreams.is_empty() {
|
||||
return None;
|
||||
}
|
||||
|
||||
let healthy: Vec<usize> = upstreams.iter()
|
||||
.enumerate()
|
||||
.filter(|(_, u)| u.healthy)
|
||||
.map(|(i, _)| i)
|
||||
.collect();
|
||||
|
||||
if healthy.is_empty() {
|
||||
// All unhealthy — pick any
|
||||
return Some(rand::rng().gen_range(0..upstreams.len()));
|
||||
}
|
||||
|
||||
if healthy.len() == 1 {
|
||||
return Some(healthy[0]);
|
||||
}
|
||||
|
||||
// Calculate latency-weighted scores
|
||||
let weights: Vec<(usize, f64)> = healthy.iter().map(|&i| {
|
||||
let base = upstreams[i].config.weight as f64;
|
||||
let latency_factor = upstreams[i].effective_latency(dc_idx)
|
||||
.map(|ms| if ms > 1.0 { 1000.0 / ms } else { 1000.0 })
|
||||
.unwrap_or(1.0);
|
||||
|
||||
(i, base * latency_factor)
|
||||
}).collect();
|
||||
|
||||
let total: f64 = weights.iter().map(|(_, w)| w).sum();
|
||||
|
||||
if total <= 0.0 {
|
||||
return Some(healthy[rand::rng().gen_range(0..healthy.len())]);
|
||||
}
|
||||
|
||||
let mut choice: f64 = rand::rng().gen_range(0.0..total);
|
||||
|
||||
for &(idx, weight) in &weights {
|
||||
if choice < weight {
|
||||
trace!(
|
||||
upstream = idx,
|
||||
dc = ?dc_idx,
|
||||
weight = format!("{:.2}", weight),
|
||||
total = format!("{:.2}", total),
|
||||
"Upstream selected"
|
||||
);
|
||||
return Some(idx);
|
||||
}
|
||||
choice -= weight;
|
||||
}
|
||||
|
||||
Some(healthy[0])
|
||||
}
|
||||
|
||||
/// Connect to target through a selected upstream.
|
||||
///
|
||||
/// `dc_idx` is used for latency-based upstream selection and RTT tracking.
|
||||
/// Pass `None` if DC index is unknown.
|
||||
pub async fn connect(&self, target: SocketAddr, dc_idx: Option<i16>) -> Result<TcpStream> {
|
||||
let idx = self.select_upstream(dc_idx).await
|
||||
.ok_or_else(|| ProxyError::Config("No upstreams available".to_string()))?;
|
||||
|
||||
let upstream = {
|
||||
let guard = self.upstreams.read().await;
|
||||
guard[idx].config.clone()
|
||||
};
|
||||
|
||||
let start = Instant::now();
|
||||
|
||||
match self.connect_via_upstream(&upstream, target).await {
|
||||
Ok(stream) => {
|
||||
let rtt_ms = start.elapsed().as_secs_f64() * 1000.0;
|
||||
let mut guard = self.upstreams.write().await;
|
||||
if let Some(u) = guard.get_mut(idx) {
|
||||
if !u.healthy {
|
||||
debug!(rtt_ms = format!("{:.1}", rtt_ms), "Upstream recovered");
|
||||
}
|
||||
u.healthy = true;
|
||||
u.fails = 0;
|
||||
|
||||
// Store per-DC latency
|
||||
if let Some(di) = dc_idx.and_then(UpstreamState::dc_array_idx) {
|
||||
u.dc_latency[di].update(rtt_ms);
|
||||
}
|
||||
}
|
||||
Ok(stream)
|
||||
},
|
||||
Err(e) => {
|
||||
let mut guard = self.upstreams.write().await;
|
||||
if let Some(u) = guard.get_mut(idx) {
|
||||
u.fails += 1;
|
||||
warn!(fails = u.fails, "Upstream failed: {}", e);
|
||||
if u.fails > 3 {
|
||||
u.healthy = false;
|
||||
warn!("Upstream marked unhealthy");
|
||||
}
|
||||
}
|
||||
Err(e)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
async fn connect_via_upstream(&self, config: &UpstreamConfig, target: SocketAddr) -> Result<TcpStream> {
|
||||
match &config.upstream_type {
|
||||
UpstreamType::Direct { interface } => {
|
||||
let bind_ip = interface.as_ref()
|
||||
.and_then(|s| s.parse::<IpAddr>().ok());
|
||||
|
||||
let socket = create_outgoing_socket_bound(target, bind_ip)?;
|
||||
|
||||
socket.set_nonblocking(true)?;
|
||||
match socket.connect(&target.into()) {
|
||||
Ok(()) => {},
|
||||
Err(err) if err.raw_os_error() == Some(libc::EINPROGRESS) || err.kind() == std::io::ErrorKind::WouldBlock => {},
|
||||
Err(err) => return Err(ProxyError::Io(err)),
|
||||
}
|
||||
|
||||
let std_stream: std::net::TcpStream = socket.into();
|
||||
let stream = TcpStream::from_std(std_stream)?;
|
||||
|
||||
stream.writable().await?;
|
||||
if let Some(e) = stream.take_error()? {
|
||||
return Err(ProxyError::Io(e));
|
||||
}
|
||||
|
||||
Ok(stream)
|
||||
},
|
||||
UpstreamType::Socks4 { address, interface, user_id } => {
|
||||
let proxy_addr: SocketAddr = address.parse()
|
||||
.map_err(|_| ProxyError::Config("Invalid SOCKS4 address".to_string()))?;
|
||||
|
||||
let bind_ip = interface.as_ref()
|
||||
.and_then(|s| s.parse::<IpAddr>().ok());
|
||||
|
||||
let socket = create_outgoing_socket_bound(proxy_addr, bind_ip)?;
|
||||
|
||||
socket.set_nonblocking(true)?;
|
||||
match socket.connect(&proxy_addr.into()) {
|
||||
Ok(()) => {},
|
||||
Err(err) if err.raw_os_error() == Some(libc::EINPROGRESS) || err.kind() == std::io::ErrorKind::WouldBlock => {},
|
||||
Err(err) => return Err(ProxyError::Io(err)),
|
||||
}
|
||||
|
||||
let std_stream: std::net::TcpStream = socket.into();
|
||||
let mut stream = TcpStream::from_std(std_stream)?;
|
||||
|
||||
stream.writable().await?;
|
||||
if let Some(e) = stream.take_error()? {
|
||||
return Err(ProxyError::Io(e));
|
||||
}
|
||||
|
||||
connect_socks4(&mut stream, target, user_id.as_deref()).await?;
|
||||
Ok(stream)
|
||||
},
|
||||
UpstreamType::Socks5 { address, interface, username, password } => {
|
||||
let proxy_addr: SocketAddr = address.parse()
|
||||
.map_err(|_| ProxyError::Config("Invalid SOCKS5 address".to_string()))?;
|
||||
|
||||
let bind_ip = interface.as_ref()
|
||||
.and_then(|s| s.parse::<IpAddr>().ok());
|
||||
|
||||
let socket = create_outgoing_socket_bound(proxy_addr, bind_ip)?;
|
||||
|
||||
socket.set_nonblocking(true)?;
|
||||
match socket.connect(&proxy_addr.into()) {
|
||||
Ok(()) => {},
|
||||
Err(err) if err.raw_os_error() == Some(libc::EINPROGRESS) || err.kind() == std::io::ErrorKind::WouldBlock => {},
|
||||
Err(err) => return Err(ProxyError::Io(err)),
|
||||
}
|
||||
|
||||
let std_stream: std::net::TcpStream = socket.into();
|
||||
let mut stream = TcpStream::from_std(std_stream)?;
|
||||
|
||||
stream.writable().await?;
|
||||
if let Some(e) = stream.take_error()? {
|
||||
return Err(ProxyError::Io(e));
|
||||
}
|
||||
|
||||
connect_socks5(&mut stream, target, username.as_deref(), password.as_deref()).await?;
|
||||
Ok(stream)
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
// ============= Startup Ping =============
|
||||
|
||||
/// Ping all Telegram DCs through all upstreams.
|
||||
pub async fn ping_all_dcs(&self, prefer_ipv6: bool) -> Vec<StartupPingResult> {
|
||||
let upstreams: Vec<(usize, UpstreamConfig)> = {
|
||||
let guard = self.upstreams.read().await;
|
||||
guard.iter().enumerate()
|
||||
.map(|(i, u)| (i, u.config.clone()))
|
||||
.collect()
|
||||
};
|
||||
|
||||
let datacenters = if prefer_ipv6 { &*TG_DATACENTERS_V6 } else { &*TG_DATACENTERS_V4 };
|
||||
|
||||
let mut all_results = Vec::new();
|
||||
|
||||
for (upstream_idx, upstream_config) in &upstreams {
|
||||
let upstream_name = match &upstream_config.upstream_type {
|
||||
UpstreamType::Direct { interface } => {
|
||||
format!("direct{}", interface.as_ref().map(|i| format!(" ({})", i)).unwrap_or_default())
|
||||
}
|
||||
UpstreamType::Socks4 { address, .. } => format!("socks4://{}", address),
|
||||
UpstreamType::Socks5 { address, .. } => format!("socks5://{}", address),
|
||||
};
|
||||
|
||||
let mut dc_results = Vec::new();
|
||||
|
||||
for (dc_zero_idx, dc_ip) in datacenters.iter().enumerate() {
|
||||
let dc_addr = SocketAddr::new(*dc_ip, TG_DATACENTER_PORT);
|
||||
|
||||
let ping_result = tokio::time::timeout(
|
||||
Duration::from_secs(5),
|
||||
self.ping_single_dc(upstream_config, dc_addr)
|
||||
).await;
|
||||
|
||||
let result = match ping_result {
|
||||
Ok(Ok(rtt_ms)) => {
|
||||
// Store per-DC latency
|
||||
let mut guard = self.upstreams.write().await;
|
||||
if let Some(u) = guard.get_mut(*upstream_idx) {
|
||||
u.dc_latency[dc_zero_idx].update(rtt_ms);
|
||||
}
|
||||
DcPingResult {
|
||||
dc_idx: dc_zero_idx + 1,
|
||||
dc_addr,
|
||||
rtt_ms: Some(rtt_ms),
|
||||
error: None,
|
||||
}
|
||||
}
|
||||
Ok(Err(e)) => DcPingResult {
|
||||
dc_idx: dc_zero_idx + 1,
|
||||
dc_addr,
|
||||
rtt_ms: None,
|
||||
error: Some(e.to_string()),
|
||||
},
|
||||
Err(_) => DcPingResult {
|
||||
dc_idx: dc_zero_idx + 1,
|
||||
dc_addr,
|
||||
rtt_ms: None,
|
||||
error: Some("timeout (5s)".to_string()),
|
||||
},
|
||||
};
|
||||
|
||||
dc_results.push(result);
|
||||
}
|
||||
|
||||
all_results.push(StartupPingResult {
|
||||
results: dc_results,
|
||||
upstream_name,
|
||||
});
|
||||
}
|
||||
|
||||
all_results
|
||||
}
|
||||
|
||||
async fn ping_single_dc(&self, config: &UpstreamConfig, target: SocketAddr) -> Result<f64> {
|
||||
let start = Instant::now();
|
||||
let _stream = self.connect_via_upstream(config, target).await?;
|
||||
Ok(start.elapsed().as_secs_f64() * 1000.0)
|
||||
}
|
||||
|
||||
// ============= Health Checks =============
|
||||
|
||||
/// Background health check: rotates through DCs, 30s interval.
|
||||
pub async fn run_health_checks(&self, prefer_ipv6: bool) {
|
||||
let datacenters = if prefer_ipv6 { &*TG_DATACENTERS_V6 } else { &*TG_DATACENTERS_V4 };
|
||||
let mut dc_rotation = 0usize;
|
||||
|
||||
loop {
|
||||
tokio::time::sleep(Duration::from_secs(30)).await;
|
||||
|
||||
let dc_zero_idx = dc_rotation % datacenters.len();
|
||||
dc_rotation += 1;
|
||||
|
||||
let check_target = SocketAddr::new(datacenters[dc_zero_idx], TG_DATACENTER_PORT);
|
||||
|
||||
let count = self.upstreams.read().await.len();
|
||||
for i in 0..count {
|
||||
let config = {
|
||||
let guard = self.upstreams.read().await;
|
||||
guard[i].config.clone()
|
||||
};
|
||||
|
||||
let start = Instant::now();
|
||||
let result = tokio::time::timeout(
|
||||
Duration::from_secs(10),
|
||||
self.connect_via_upstream(&config, check_target)
|
||||
).await;
|
||||
|
||||
let mut guard = self.upstreams.write().await;
|
||||
let u = &mut guard[i];
|
||||
|
||||
match result {
|
||||
Ok(Ok(_stream)) => {
|
||||
let rtt_ms = start.elapsed().as_secs_f64() * 1000.0;
|
||||
u.dc_latency[dc_zero_idx].update(rtt_ms);
|
||||
|
||||
if !u.healthy {
|
||||
info!(
|
||||
rtt = format!("{:.0}ms", rtt_ms),
|
||||
dc = dc_zero_idx + 1,
|
||||
"Upstream recovered"
|
||||
);
|
||||
}
|
||||
u.healthy = true;
|
||||
u.fails = 0;
|
||||
}
|
||||
Ok(Err(e)) => {
|
||||
u.fails += 1;
|
||||
debug!(dc = dc_zero_idx + 1, fails = u.fails,
|
||||
"Health check failed: {}", e);
|
||||
if u.fails > 3 {
|
||||
u.healthy = false;
|
||||
warn!("Upstream unhealthy (fails)");
|
||||
}
|
||||
}
|
||||
Err(_) => {
|
||||
u.fails += 1;
|
||||
debug!(dc = dc_zero_idx + 1, fails = u.fails,
|
||||
"Health check timeout");
|
||||
if u.fails > 3 {
|
||||
u.healthy = false;
|
||||
warn!("Upstream unhealthy (timeout)");
|
||||
}
|
||||
}
|
||||
}
|
||||
u.last_check = std::time::Instant::now();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,6 +1,6 @@
|
||||
//! IP Addr Detect
|
||||
|
||||
use std::net::IpAddr;
|
||||
use std::net::{IpAddr, SocketAddr, UdpSocket};
|
||||
use std::time::Duration;
|
||||
use tracing::{debug, warn};
|
||||
|
||||
@@ -40,31 +40,77 @@ const IPV6_URLS: &[&str] = &[
|
||||
"http://api6.ipify.org/",
|
||||
];
|
||||
|
||||
/// Detect local IP address by connecting to a public DNS
|
||||
/// This does not actually send any packets
|
||||
fn get_local_ip(target: &str) -> Option<IpAddr> {
|
||||
let socket = UdpSocket::bind("0.0.0.0:0").ok()?;
|
||||
socket.connect(target).ok()?;
|
||||
socket.local_addr().ok().map(|addr| addr.ip())
|
||||
}
|
||||
|
||||
fn get_local_ipv6(target: &str) -> Option<IpAddr> {
|
||||
let socket = UdpSocket::bind("[::]:0").ok()?;
|
||||
socket.connect(target).ok()?;
|
||||
socket.local_addr().ok().map(|addr| addr.ip())
|
||||
}
|
||||
|
||||
/// Detect public IP addresses
|
||||
pub async fn detect_ip() -> IpInfo {
|
||||
let mut info = IpInfo::default();
|
||||
|
||||
// Detect IPv4
|
||||
// Try to get local interface IP first (default gateway interface)
|
||||
// We connect to Google DNS to find out which interface is used for routing
|
||||
if let Some(ip) = get_local_ip("8.8.8.8:80") {
|
||||
if ip.is_ipv4() && !ip.is_loopback() {
|
||||
info.ipv4 = Some(ip);
|
||||
debug!(ip = %ip, "Detected local IPv4 address via routing");
|
||||
}
|
||||
}
|
||||
|
||||
if let Some(ip) = get_local_ipv6("[2001:4860:4860::8888]:80") {
|
||||
if ip.is_ipv6() && !ip.is_loopback() {
|
||||
info.ipv6 = Some(ip);
|
||||
debug!(ip = %ip, "Detected local IPv6 address via routing");
|
||||
}
|
||||
}
|
||||
|
||||
// If local detection failed or returned private IP (and we want public),
|
||||
// or just as a fallback/verification, we might want to check external services.
|
||||
// However, the requirement is: "if IP for listening is not set... it should be IP from interface...
|
||||
// if impossible - request external resources".
|
||||
|
||||
// So if we found a local IP, we might be good. But often servers are behind NAT.
|
||||
// If the local IP is private, we probably want the public IP for the tg:// link.
|
||||
// Let's check if the detected IPs are private.
|
||||
|
||||
let need_external_v4 = info.ipv4.map_or(true, |ip| is_private_ip(ip));
|
||||
let need_external_v6 = info.ipv6.map_or(true, |ip| is_private_ip(ip));
|
||||
|
||||
if need_external_v4 {
|
||||
debug!("Local IPv4 is private or missing, checking external services...");
|
||||
for url in IPV4_URLS {
|
||||
if let Some(ip) = fetch_ip(url).await {
|
||||
if ip.is_ipv4() {
|
||||
info.ipv4 = Some(ip);
|
||||
debug!(ip = %ip, "Detected IPv4 address");
|
||||
debug!(ip = %ip, "Detected public IPv4 address");
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Detect IPv6
|
||||
if need_external_v6 {
|
||||
debug!("Local IPv6 is private or missing, checking external services...");
|
||||
for url in IPV6_URLS {
|
||||
if let Some(ip) = fetch_ip(url).await {
|
||||
if ip.is_ipv6() {
|
||||
info.ipv6 = Some(ip);
|
||||
debug!(ip = %ip, "Detected IPv6 address");
|
||||
debug!(ip = %ip, "Detected public IPv6 address");
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if !info.has_any() {
|
||||
warn!("Failed to detect public IP address");
|
||||
@@ -73,6 +119,17 @@ pub async fn detect_ip() -> IpInfo {
|
||||
info
|
||||
}
|
||||
|
||||
fn is_private_ip(ip: IpAddr) -> bool {
|
||||
match ip {
|
||||
IpAddr::V4(ipv4) => {
|
||||
ipv4.is_private() || ipv4.is_loopback() || ipv4.is_link_local()
|
||||
}
|
||||
IpAddr::V6(ipv6) => {
|
||||
ipv6.is_loopback() || (ipv6.segments()[0] & 0xfe00) == 0xfc00 // Unique Local
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Fetch IP from URL
|
||||
async fn fetch_ip(url: &str) -> Option<IpAddr> {
|
||||
let client = reqwest::Client::builder()
|
||||
|
||||
Reference in New Issue
Block a user