20 Commits

Author SHA1 Message Date
Alexey
9bd12f6acb 1.2.0.2 Special DC support: merge pull request #32 from telemt/1.2.0.2
1.2.0.2 Special DC support
2026-02-12 18:46:40 +03:00
Alexey
61581203c4 Semaphore + Async Magics for Defcluster
Co-Authored-By: brekotis <93345790+brekotis@users.noreply.github.com>
2026-02-12 18:38:05 +03:00
Alexey
84668e671e Default Cluster Drafts
Co-Authored-By: brekotis <93345790+brekotis@users.noreply.github.com>
2026-02-12 18:25:41 +03:00
Alexey
5bde202866 Startup logging refactoring: merge pull request #26 from Katze-942/main
Startup logging refactoring
2026-02-12 11:46:22 +03:00
Жора Змейкин
9304d5256a Refactor startup logging
Move all startup output (DC pings, proxy links) from println!() to
      info!() for consistent tracing format. Add reload::Layer so startup
      messages stay visible even in silent mode.
2026-02-12 05:14:23 +03:00
Alexey
364bc6e278 Merge pull request #21 from telemt/1.2.0.0
1.2.0.0
2026-02-11 17:00:46 +03:00
Alexey
e83db704b7 Pull-up 2026-02-11 16:55:18 +03:00
Alexey
acf90043eb Merge pull request #15 from telemt/main-emergency
Update README.md
2026-02-11 00:56:12 +03:00
Alexey
0011e20653 Update README.md 2026-02-11 00:55:27 +03:00
Alexey
41fb307858 Merge pull request #14 from telemt/main-emergency
Update README.md
2026-02-11 00:41:30 +03:00
Alexey
6a78c44d2e Update README.md 2026-02-11 00:41:08 +03:00
Alexey
be9c9858ac Merge pull request #13 from telemt/main-emergency
Main emergency
2026-02-11 00:39:45 +03:00
Alexey
2fa8d85b4c Update README.md 2026-02-11 00:31:45 +03:00
Alexey
310666fd44 Update README.md 2026-02-11 00:31:02 +03:00
Alexey
6cafee153a Fire-and-Forgot™ Draft
- Added fire-and-forget ignition via `--init` CLI command:
  - New `mod cli;` module handling installation logic
  - Extended `parse_cli()` to process `--init` flag (runs synchronously before tokio runtime)
  - Expanded `--help` output with installation options

- `--init` command functionality:
  - Generates random secret if not provided via `--secret`
  - Creates `/etc/telemt/config.toml` from template with user-provided or default parameters (`--port`, `--domain`, `--user`, `--config-dir`)
  - Creates hardened systemd unit `/etc/systemd/system/telemt.service` with security features:
    - `NoNewPrivileges=true`
    - `ProtectSystem=strict`
    - `PrivateTmp=true`
  - Runs `systemctl enable --now telemt.service`
  - Outputs `tg://` proxy links for the running service

- Implementation approach:
  - `--init` handled at the very start of `main()` before any async context
  - Uses blocking operations throughout (file I/O, `std::process::Command` for systemctl)
  - IP detection for tg:// links performed via blocking HTTP request
  - Command exits after installation without entering normal proxy runtime

- New CLI parameters for installation:
  - `--port` - listening port (default: 443)
  - `--domain` - TLS domain (default: auto-detected)
  - `--secret` - custom secret (default: randomly generated)
  - `--user` - systemd service user (default: telemt)
  - `--config-dir` - configuration directory (default: /etc/telemt)

Co-Authored-By: brekotis <93345790+brekotis@users.noreply.github.com>
2026-02-07 20:31:49 +03:00
Alexey
32f60f34db Fix Stats + UpstreamState + EMA Latency Tracking
- Per-DC latency tracking in UpstreamState (array of 5 EMA instances, one per DC):
  - Added `dc_latency: [LatencyEma; 5]` – per‑DC tracking instead of a single global EMA
  - `effective_latency(dc_idx)` – returns DC‑specific latency, falls back to average if unavailable
  - `select_upstream(dc_idx)` – now performs latency‑weighted selection: effective_weight = config_weight × (1000 / latency_ms)
    - Example: two upstreams with equal config weight but latencies of 50ms and 200ms → selection probabilities become 80% / 20%
  - `connect(target, dc_idx)` – extended signature, dc_idx used for upstream selection and per‑DC RTT recording
  - All ping/health‑check operations now record RTT into `dc_latency[dc_zero_index]`
  - `upstream_manager.connect(dc_addr)` changed to `upstream_manager.connect(dc_addr, Some(success.dc_idx))` – DC index now participates in upstream selection and per‑DC RTT logging
  - `client.rs` – passes dc_idx when connecting to Telegram

- Summary: Upstream selection now accounts for per‑DC latency using the formula weight × (1000/ms). With multiple upstreams (e.g., direct + socks5), traffic automatically flows to the faster route for each specific DC. With a single upstream, the data is used for monitoring without affecting routing.

Co-Authored-By: brekotis <93345790+brekotis@users.noreply.github.com>
2026-02-07 20:24:12 +03:00
Alexey
158eae8d2a Antireplay Improvements + DC Ping
- Fix: LruCache::get type ambiguity in stats/mod.rs
  - Changed `self.cache.get(&key.into())` to `self.cache.get(key)` (key is already &[u8], resolved via Box<[u8]>: Borrow<[u8]>)
  - Changed `self.cache.peek(&key)` / `.pop(&key)` to `.peek(key.as_ref())` / `.pop(key.as_ref())` (explicit &[u8] instead of &Box<[u8]>)

- Startup DC ping with RTT display and improved health-check (all DCs, RTT tracking, EMA latency, 30s interval):
  - Implemented `LatencyEma` – exponential moving average (α=0.3) for RTT
  - `connect()` – measures RTT of each real connection and updates EMA
  - `ping_all_dcs()` – pings all 5 DCs via each upstream, returns `Vec<StartupPingResult>` with RTT or error
  - `run_health_checks(prefer_ipv6)` – accepts IPv6 preference parameter, rotates DC between cycles (DC1→DC2→...→DC5→DC1...), interval reduced to 30s from 60s, failed checks now mark upstream as unhealthy after 3 consecutive fails
  - `DcPingResult` / `StartupPingResult` – public structures for display
  - DC Ping at startup: calls `upstream_manager.ping_all_dcs()` before accept loop, outputs table via `println!` (always visible)
  - Health checks with `prefer_ipv6`: `run_health_checks(prefer_ipv6)` receives the parameter
  - Exported `StartupPingResult` and `DcPingResult`

- Summary: Startup DC ping with RTT, rotational health-check with EMA latency tracking, 30-second interval, correct unhealthy marking after 3 fails.

Co-Authored-By: brekotis <93345790+brekotis@users.noreply.github.com>
2026-02-07 20:18:25 +03:00
Alexey
92cedabc81 Zeroize for key + log refactor + fix tests
- Fixed tests that failed to compile due to mismatched generic parameters of HandshakeResult:
  - Changed `HandshakeResult<i32>` to `HandshakeResult<i32, (), ()>`
  - Changed `HandshakeResult::BadClient` to `HandshakeResult::BadClient { reader: (), writer: () }`

- Added Zeroize for all structures holding key material:
  - AesCbc – key and IV are zeroized on drop
  - SecureRandomInner – PRNG output buffer is zeroized on drop; local key copy in constructor is zeroized immediately after being passed to the cipher
  - ObfuscationParams – all four key‑material fields are zeroized on drop
  - HandshakeSuccess – all four key‑material fields are zeroized on drop

- Added protocol‑requirement documentation for legacy hashes (CodeQL suppression) in hash.rs (MD5/SHA‑1)

- Added documentation for zeroize limitations of AesCtr (opaque cipher state) in aes.rs

- Implemented silent‑mode logging and refactored initialization:
  - Added LogLevel enum to config and CLI flags --silent / --log-level
  - Added parse_cli() to handle --silent, --log-level, --help
  - Restructured main.rs initialization order: CLI → config load → determine log level → init tracing
  - Errors before tracing initialization are printed via eprintln!
  - Proxy links (tg://) are printed via println! – always visible regardless of log level
  - Configuration summary and operational messages are logged via info! (suppressed in silent mode)
  - Connection processing errors are lowered to debug! (hidden in silent mode)
  - Warning about default tls_domain moved to main (after tracing init)

Co-Authored-By: brekotis <93345790+brekotis@users.noreply.github.com>
2026-02-07 19:49:41 +03:00
Alexey
b9428d9780 Antireplay on sliding window + SecureRandom 2026-02-07 18:26:44 +03:00
Alexey
5876f0c4d5 Update rust.yml 2026-02-07 17:58:10 +03:00
26 changed files with 4376 additions and 841 deletions

View File

@@ -14,6 +14,11 @@ jobs:
name: Build
runs-on: ubuntu-latest
permissions:
contents: read
actions: write
checks: write
steps:
- name: Checkout repository
uses: actions/checkout@v4

2742
Cargo.lock generated Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,15 +1,14 @@
[package]
name = "telemt"
version = "1.0.0"
edition = "2021"
rust-version = "1.75"
version = "1.2.0"
edition = "2024"
[dependencies]
# C
libc = "0.2"
# Async runtime
tokio = { version = "1.35", features = ["full", "tracing"] }
tokio = { version = "1.42", features = ["full", "tracing"] }
tokio-util = { version = "0.7", features = ["codec"] }
# Crypto
@@ -20,41 +19,41 @@ sha2 = "0.10"
sha1 = "0.10"
md-5 = "0.10"
hmac = "0.12"
crc32fast = "1.3"
crc32fast = "1.4"
zeroize = { version = "1.8", features = ["derive"] }
# Network
socket2 = { version = "0.5", features = ["all"] }
rustls = "0.22"
# Serial
# Serialization
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
toml = "0.8"
# Utils
bytes = "1.5"
thiserror = "1.0"
bytes = "1.9"
thiserror = "2.0"
tracing = "0.1"
tracing-subscriber = { version = "0.3", features = ["env-filter"] }
parking_lot = "0.12"
dashmap = "5.5"
lru = "0.12"
rand = "0.8"
rand = "0.9"
chrono = { version = "0.4", features = ["serde"] }
hex = "0.4"
base64 = "0.21"
base64 = "0.22"
url = "2.5"
regex = "1.10"
once_cell = "1.19"
regex = "1.11"
crossbeam-queue = "0.3"
# HTTP
reqwest = { version = "0.11", features = ["rustls-tls"], default-features = false }
reqwest = { version = "0.12", features = ["rustls-tls"], default-features = false }
[dev-dependencies]
tokio-test = "0.4"
criterion = "0.5"
proptest = "1.4"
futures = "0.3"
[[bench]]
name = "crypto_bench"

View File

@@ -2,6 +2,26 @@
**Telemt** is a fast, secure, and feature-rich server written in Rust: it fully implements the official Telegram proxy algo and adds many production-ready improvements such as connection pooling, replay protection, detailed statistics, masking from "prying" eyes
## Emergency
**Важное сообщение для пользователей из России**
Мы работаем над проектом с Нового года и сейчас готовим новый релиз - 1.2
В нём имплементируется поддержка Middle Proxy Protocol - основного терминатора для Ad Tag:
работа над ним идёт с 6 ферваля, а уже 10 февраля произошли "громкие события"...
Если у вас есть компетенции в асинхронных сетевых приложениях - мы открыты к предложениям и pull requests
**Important message for users from Russia**
We've been working on the project since December 30 and are currently preparing a new release 1.2
It implements support for the Middle Proxy Protocol the primary point for the Ad Tag:
development on it started on February 6th, and by February 10th, "big activity" in Russia had already "taken place"...
If you have expertise in asynchronous network applications we are open to ideas and pull requests!
# Features
💥 The configuration structure has changed since version 1.1.0.0, change it in your environment!
⚓ Our implementation of **TLS-fronting** is one of the most deeply debugged, focused, advanced and *almost* **"behaviorally consistent to real"**: we are confident we have it right - [see evidence on our validation and traces](#recognizability-for-dpi-and-crawler)

View File

@@ -6,8 +6,13 @@ show_link = ["hello"]
[general]
prefer_ipv6 = false
fast_mode = true
use_middle_proxy = false
# ad_tag = "..."
use_middle_proxy = true
ad_tag = "00000000000000000000000000000000"
# Log level: debug | verbose | normal | silent
# Can be overridden with --silent or --log-level CLI flags
# RUST_LOG env var takes absolute priority over all of these
log_level = "normal"
[general.modes]
classic = false
@@ -39,16 +44,16 @@ client_ack = 300
# === Anti-Censorship & Masking ===
[censorship]
tls_domain = "petrovich.ru"
tls_domain = "google.ru"
mask = true
mask_port = 443
# mask_host = "petrovich.ru" # Defaults to tls_domain if not set
fake_cert_len = 2048
# === Access Control & Users ===
# username "hello" is used for example
[access]
replay_check_len = 65536
replay_window_secs = 1800
ignore_time_skew = false
[access.users]
@@ -62,15 +67,11 @@ hello = "00000000000000000000000000000000"
# hello = 1073741824 # 1 GB
# === Upstreams & Routing ===
# By default, direct connection is used, but you can add SOCKS proxy
# Direct - Default
[[upstreams]]
type = "direct"
enabled = true
weight = 10
# SOCKS5
# [[upstreams]]
# type = "socks5"
# address = "127.0.0.1:9050"

300
src/cli.rs Normal file
View File

@@ -0,0 +1,300 @@
//! CLI commands: --init (fire-and-forget setup)
use std::fs;
use std::path::{Path, PathBuf};
use std::process::Command;
use rand::Rng;
/// Options for the init command
pub struct InitOptions {
pub port: u16,
pub domain: String,
pub secret: Option<String>,
pub username: String,
pub config_dir: PathBuf,
pub no_start: bool,
}
impl Default for InitOptions {
fn default() -> Self {
Self {
port: 443,
domain: "www.google.com".to_string(),
secret: None,
username: "user".to_string(),
config_dir: PathBuf::from("/etc/telemt"),
no_start: false,
}
}
}
/// Parse --init subcommand options from CLI args.
///
/// Returns `Some(InitOptions)` if `--init` was found, `None` otherwise.
pub fn parse_init_args(args: &[String]) -> Option<InitOptions> {
if !args.iter().any(|a| a == "--init") {
return None;
}
let mut opts = InitOptions::default();
let mut i = 0;
while i < args.len() {
match args[i].as_str() {
"--port" => {
i += 1;
if i < args.len() {
opts.port = args[i].parse().unwrap_or(443);
}
}
"--domain" => {
i += 1;
if i < args.len() {
opts.domain = args[i].clone();
}
}
"--secret" => {
i += 1;
if i < args.len() {
opts.secret = Some(args[i].clone());
}
}
"--user" => {
i += 1;
if i < args.len() {
opts.username = args[i].clone();
}
}
"--config-dir" => {
i += 1;
if i < args.len() {
opts.config_dir = PathBuf::from(&args[i]);
}
}
"--no-start" => {
opts.no_start = true;
}
_ => {}
}
i += 1;
}
Some(opts)
}
/// Run the fire-and-forget setup.
pub fn run_init(opts: InitOptions) -> Result<(), Box<dyn std::error::Error>> {
eprintln!("[telemt] Fire-and-forget setup");
eprintln!();
// 1. Generate or validate secret
let secret = match opts.secret {
Some(s) => {
if s.len() != 32 || !s.chars().all(|c| c.is_ascii_hexdigit()) {
eprintln!("[error] Secret must be exactly 32 hex characters");
std::process::exit(1);
}
s
}
None => generate_secret(),
};
eprintln!("[+] Secret: {}", secret);
eprintln!("[+] User: {}", opts.username);
eprintln!("[+] Port: {}", opts.port);
eprintln!("[+] Domain: {}", opts.domain);
// 2. Create config directory
fs::create_dir_all(&opts.config_dir)?;
let config_path = opts.config_dir.join("config.toml");
// 3. Write config
let config_content = generate_config(&opts.username, &secret, opts.port, &opts.domain);
fs::write(&config_path, &config_content)?;
eprintln!("[+] Config written to {}", config_path.display());
// 4. Write systemd unit
let exe_path = std::env::current_exe()
.unwrap_or_else(|_| PathBuf::from("/usr/local/bin/telemt"));
let unit_path = Path::new("/etc/systemd/system/telemt.service");
let unit_content = generate_systemd_unit(&exe_path, &config_path);
match fs::write(unit_path, &unit_content) {
Ok(()) => {
eprintln!("[+] Systemd unit written to {}", unit_path.display());
}
Err(e) => {
eprintln!("[!] Cannot write systemd unit (run as root?): {}", e);
eprintln!("[!] Manual unit file content:");
eprintln!("{}", unit_content);
// Still print links and config
print_links(&opts.username, &secret, opts.port, &opts.domain);
return Ok(());
}
}
// 5. Reload systemd
run_cmd("systemctl", &["daemon-reload"]);
// 6. Enable service
run_cmd("systemctl", &["enable", "telemt.service"]);
eprintln!("[+] Service enabled");
// 7. Start service (unless --no-start)
if !opts.no_start {
run_cmd("systemctl", &["start", "telemt.service"]);
eprintln!("[+] Service started");
// Brief delay then check status
std::thread::sleep(std::time::Duration::from_secs(1));
let status = Command::new("systemctl")
.args(["is-active", "telemt.service"])
.output();
match status {
Ok(out) if out.status.success() => {
eprintln!("[+] Service is running");
}
_ => {
eprintln!("[!] Service may not have started correctly");
eprintln!("[!] Check: journalctl -u telemt.service -n 20");
}
}
} else {
eprintln!("[+] Service not started (--no-start)");
eprintln!("[+] Start manually: systemctl start telemt.service");
}
eprintln!();
// 8. Print links
print_links(&opts.username, &secret, opts.port, &opts.domain);
Ok(())
}
fn generate_secret() -> String {
let mut rng = rand::rng();
let bytes: Vec<u8> = (0..16).map(|_| rng.random::<u8>()).collect();
hex::encode(bytes)
}
fn generate_config(username: &str, secret: &str, port: u16, domain: &str) -> String {
format!(
r#"# Telemt MTProxy — auto-generated config
# Re-run `telemt --init` to regenerate
show_link = ["{username}"]
[general]
prefer_ipv6 = false
fast_mode = true
use_middle_proxy = false
log_level = "normal"
[general.modes]
classic = false
secure = false
tls = true
[server]
port = {port}
listen_addr_ipv4 = "0.0.0.0"
listen_addr_ipv6 = "::"
[[server.listeners]]
ip = "0.0.0.0"
[[server.listeners]]
ip = "::"
[timeouts]
client_handshake = 15
tg_connect = 10
client_keepalive = 60
client_ack = 300
[censorship]
tls_domain = "{domain}"
mask = true
mask_port = 443
fake_cert_len = 2048
[access]
replay_check_len = 65536
replay_window_secs = 1800
ignore_time_skew = false
[access.users]
{username} = "{secret}"
[[upstreams]]
type = "direct"
enabled = true
weight = 10
"#,
username = username,
secret = secret,
port = port,
domain = domain,
)
}
fn generate_systemd_unit(exe_path: &Path, config_path: &Path) -> String {
format!(
r#"[Unit]
Description=Telemt MTProxy
Documentation=https://github.com/nicepkg/telemt
After=network-online.target
Wants=network-online.target
[Service]
Type=simple
ExecStart={exe} {config}
Restart=always
RestartSec=5
LimitNOFILE=65535
# Security hardening
NoNewPrivileges=true
ProtectSystem=strict
ProtectHome=true
ReadWritePaths=/etc/telemt
PrivateTmp=true
[Install]
WantedBy=multi-user.target
"#,
exe = exe_path.display(),
config = config_path.display(),
)
}
fn run_cmd(cmd: &str, args: &[&str]) {
match Command::new(cmd).args(args).output() {
Ok(output) => {
if !output.status.success() {
let stderr = String::from_utf8_lossy(&output.stderr);
eprintln!("[!] {} {} failed: {}", cmd, args.join(" "), stderr.trim());
}
}
Err(e) => {
eprintln!("[!] Failed to run {} {}: {}", cmd, args.join(" "), e);
}
}
}
fn print_links(username: &str, secret: &str, port: u16, domain: &str) {
let domain_hex = hex::encode(domain);
println!("=== Proxy Links ===");
println!("[{}]", username);
println!(" EE-TLS: tg://proxy?server=YOUR_SERVER_IP&port={}&secret=ee{}{}",
port, secret, domain_hex);
println!();
println!("Replace YOUR_SERVER_IP with your server's public IP.");
println!("The proxy will auto-detect and display the correct link on startup.");
println!("Check: journalctl -u telemt.service | head -30");
println!("===================");
}

View File

@@ -1,7 +1,7 @@
//! Configuration
use std::collections::HashMap;
use std::net::IpAddr;
use std::net::{IpAddr, SocketAddr};
use std::path::Path;
use chrono::{DateTime, Utc};
use serde::{Deserialize, Serialize};
@@ -14,6 +14,7 @@ fn default_port() -> u16 { 443 }
fn default_tls_domain() -> String { "www.google.com".to_string() }
fn default_mask_port() -> u16 { 443 }
fn default_replay_check_len() -> usize { 65536 }
fn default_replay_window_secs() -> u64 { 1800 }
fn default_handshake_timeout() -> u64 { 15 }
fn default_connect_timeout() -> u64 { 10 }
fn default_keepalive() -> u64 { 60 }
@@ -28,6 +29,59 @@ fn default_metrics_whitelist() -> Vec<IpAddr> {
]
}
// ============= Log Level =============
/// Logging verbosity level
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Default)]
#[serde(rename_all = "lowercase")]
pub enum LogLevel {
/// All messages including trace (trace + debug + info + warn + error)
Debug,
/// Detailed operational logs (debug + info + warn + error)
Verbose,
/// Standard operational logs (info + warn + error)
#[default]
Normal,
/// Minimal output: only warnings and errors (warn + error).
/// Startup messages (config, DC connectivity, proxy links) are always shown
/// via info! before the filter is applied.
Silent,
}
impl LogLevel {
/// Convert to tracing EnvFilter directive string
pub fn to_filter_str(&self) -> &'static str {
match self {
LogLevel::Debug => "trace",
LogLevel::Verbose => "debug",
LogLevel::Normal => "info",
LogLevel::Silent => "warn",
}
}
/// Parse from a loose string (CLI argument)
pub fn from_str_loose(s: &str) -> Self {
match s.to_lowercase().as_str() {
"debug" | "trace" => LogLevel::Debug,
"verbose" => LogLevel::Verbose,
"normal" | "info" => LogLevel::Normal,
"silent" | "quiet" | "error" | "warn" => LogLevel::Silent,
_ => LogLevel::Normal,
}
}
}
impl std::fmt::Display for LogLevel {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
LogLevel::Debug => write!(f, "debug"),
LogLevel::Verbose => write!(f, "verbose"),
LogLevel::Normal => write!(f, "normal"),
LogLevel::Silent => write!(f, "silent"),
}
}
}
// ============= Sub-Configs =============
#[derive(Debug, Clone, Serialize, Deserialize)]
@@ -62,6 +116,9 @@ pub struct GeneralConfig {
#[serde(default)]
pub ad_tag: Option<String>,
#[serde(default)]
pub log_level: LogLevel,
}
impl Default for GeneralConfig {
@@ -72,6 +129,7 @@ impl Default for GeneralConfig {
fast_mode: true,
use_middle_proxy: false,
ad_tag: None,
log_level: LogLevel::Normal,
}
}
}
@@ -187,6 +245,9 @@ pub struct AccessConfig {
#[serde(default = "default_replay_check_len")]
pub replay_check_len: usize,
#[serde(default = "default_replay_window_secs")]
pub replay_window_secs: u64,
#[serde(default)]
pub ignore_time_skew: bool,
}
@@ -201,6 +262,7 @@ impl Default for AccessConfig {
user_expirations: HashMap::new(),
user_data_quota: HashMap::new(),
replay_check_len: default_replay_check_len(),
replay_window_secs: default_replay_window_secs(),
ignore_time_skew: false,
}
}
@@ -274,6 +336,21 @@ pub struct ProxyConfig {
#[serde(default)]
pub show_link: Vec<String>,
/// DC address overrides for non-standard DCs (CDN, media, test, etc.)
/// Keys are DC indices as strings, values are "ip:port" addresses.
/// Matches the C implementation's `proxy_for <dc_id> <ip>:<port>` config directive.
/// Example in config.toml:
/// [dc_overrides]
/// "203" = "149.154.175.100:443"
#[serde(default)]
pub dc_overrides: HashMap<String, String>,
/// Default DC index (1-5) for unmapped non-standard DCs.
/// Matches the C implementation's `default <dc_id>` config directive.
/// If not set, defaults to 2 (matching Telegram's official `default 2;` in proxy-multi.conf).
#[serde(default)]
pub default_dc: Option<u8>,
}
impl ProxyConfig {
@@ -299,20 +376,14 @@ impl ProxyConfig {
return Err(ProxyError::Config("tls_domain cannot be empty".to_string()));
}
// Warn if using default tls_domain
if config.censorship.tls_domain == "www.google.com" {
tracing::warn!("Using default tls_domain (www.google.com). Consider setting a custom domain in config.toml");
}
// Default mask_host to tls_domain if not set
if config.censorship.mask_host.is_none() {
tracing::info!("mask_host not set, using tls_domain ({}) for masking", config.censorship.tls_domain);
config.censorship.mask_host = Some(config.censorship.tls_domain.clone());
}
// Random fake_cert_len
use rand::Rng;
config.censorship.fake_cert_len = rand::thread_rng().gen_range(1024..4096);
config.censorship.fake_cert_len = rand::rng().gen_range(1024..4096);
// Migration: Populate listeners if empty
if config.server.listeners.is_empty() {
@@ -353,7 +424,6 @@ impl ProxyConfig {
return Err(ProxyError::Config("No modes enabled".to_string()));
}
// Validate tls_domain format (basic check)
if self.censorship.tls_domain.contains(' ') || self.censorship.tls_domain.contains('/') {
return Err(ProxyError::Config(
format!("Invalid tls_domain: '{}'. Must be a valid domain name", self.censorship.tls_domain)

View File

@@ -1,9 +1,19 @@
//! AES encryption implementations
//!
//! Provides AES-256-CTR and AES-256-CBC modes for MTProto encryption.
//!
//! ## Zeroize policy
//!
//! - `AesCbc` stores raw key/IV bytes and zeroizes them on drop.
//! - `AesCtr` wraps an opaque `Aes256Ctr` cipher from the `ctr` crate.
//! The expanded key schedule lives inside that type and cannot be
//! zeroized from outside. Callers that hold raw key material (e.g.
//! `HandshakeSuccess`, `ObfuscationParams`) are responsible for
//! zeroizing their own copies.
use aes::Aes256;
use ctr::{Ctr128BE, cipher::{KeyIvInit, StreamCipher}};
use zeroize::Zeroize;
use crate::error::{ProxyError, Result};
type Aes256Ctr = Ctr128BE<Aes256>;
@@ -12,7 +22,12 @@ type Aes256Ctr = Ctr128BE<Aes256>;
/// AES-256-CTR encryptor/decryptor
///
/// CTR mode is symmetric - encryption and decryption are the same operation.
/// CTR mode is symmetric encryption and decryption are the same operation.
///
/// **Zeroize note:** The inner `Aes256Ctr` cipher state (expanded key schedule
/// + counter) is opaque and cannot be zeroized. If you need to protect key
/// material, zeroize the `[u8; 32]` key and `u128` IV at the call site
/// before dropping them.
pub struct AesCtr {
cipher: Aes256Ctr,
}
@@ -62,14 +77,23 @@ impl AesCtr {
/// AES-256-CBC cipher with proper chaining
///
/// Unlike CTR mode, CBC is NOT symmetric - encryption and decryption
/// Unlike CTR mode, CBC is NOT symmetric encryption and decryption
/// are different operations. This implementation handles CBC chaining
/// correctly across multiple blocks.
///
/// Key and IV are zeroized on drop.
pub struct AesCbc {
key: [u8; 32],
iv: [u8; 16],
}
impl Drop for AesCbc {
fn drop(&mut self) {
self.key.zeroize();
self.iv.zeroize();
}
}
impl AesCbc {
/// AES block size
const BLOCK_SIZE: usize = 16;
@@ -141,17 +165,9 @@ impl AesCbc {
for chunk in data.chunks(Self::BLOCK_SIZE) {
let plaintext: [u8; 16] = chunk.try_into().unwrap();
// XOR plaintext with previous ciphertext (or IV for first block)
let xored = Self::xor_blocks(&plaintext, &prev_ciphertext);
// Encrypt the XORed block
let ciphertext = self.encrypt_block(&xored, &key_schedule);
// Save for next iteration
prev_ciphertext = ciphertext;
// Append to result
result.extend_from_slice(&ciphertext);
}
@@ -180,17 +196,9 @@ impl AesCbc {
for chunk in data.chunks(Self::BLOCK_SIZE) {
let ciphertext: [u8; 16] = chunk.try_into().unwrap();
// Decrypt the block
let decrypted = self.decrypt_block(&ciphertext, &key_schedule);
// XOR with previous ciphertext (or IV for first block)
let plaintext = Self::xor_blocks(&decrypted, &prev_ciphertext);
// Save current ciphertext for next iteration
prev_ciphertext = ciphertext;
// Append to result
result.extend_from_slice(&plaintext);
}
@@ -217,16 +225,13 @@ impl AesCbc {
for i in (0..data.len()).step_by(Self::BLOCK_SIZE) {
let block = &mut data[i..i + Self::BLOCK_SIZE];
// XOR with previous ciphertext
for j in 0..Self::BLOCK_SIZE {
block[j] ^= prev_ciphertext[j];
}
// Encrypt in-place
let block_array: &mut [u8; 16] = block.try_into().unwrap();
*block_array = self.encrypt_block(block_array, &key_schedule);
// Save for next iteration
prev_ciphertext = *block_array;
}
@@ -248,26 +253,20 @@ impl AesCbc {
use aes::cipher::KeyInit;
let key_schedule = aes::Aes256::new((&self.key).into());
// For in-place decryption, we need to save ciphertext blocks
// before we overwrite them
let mut prev_ciphertext = self.iv;
for i in (0..data.len()).step_by(Self::BLOCK_SIZE) {
let block = &mut data[i..i + Self::BLOCK_SIZE];
// Save current ciphertext before modifying
let current_ciphertext: [u8; 16] = block.try_into().unwrap();
// Decrypt in-place
let block_array: &mut [u8; 16] = block.try_into().unwrap();
*block_array = self.decrypt_block(block_array, &key_schedule);
// XOR with previous ciphertext
for j in 0..Self::BLOCK_SIZE {
block[j] ^= prev_ciphertext[j];
}
// Save for next iteration
prev_ciphertext = current_ciphertext;
}
@@ -347,10 +346,8 @@ mod tests {
let mut cipher = AesCtr::new(&key, iv);
cipher.apply(&mut data);
// Encrypted should be different
assert_ne!(&data[..], original);
// Decrypt with fresh cipher
let mut cipher = AesCtr::new(&key, iv);
cipher.apply(&mut data);
@@ -364,7 +361,7 @@ mod tests {
let key = [0u8; 32];
let iv = [0u8; 16];
let original = [0u8; 32]; // 2 blocks
let original = [0u8; 32];
let cipher = AesCbc::new(key, iv);
let encrypted = cipher.encrypt(&original).unwrap();
@@ -375,31 +372,25 @@ mod tests {
#[test]
fn test_aes_cbc_chaining_works() {
// This is the key test - verify CBC chaining is correct
let key = [0x42u8; 32];
let iv = [0x00u8; 16];
// Two IDENTICAL plaintext blocks
let plaintext = [0xAAu8; 32];
let cipher = AesCbc::new(key, iv);
let ciphertext = cipher.encrypt(&plaintext).unwrap();
// With proper CBC, identical plaintext blocks produce DIFFERENT ciphertext
let block1 = &ciphertext[0..16];
let block2 = &ciphertext[16..32];
assert_ne!(
block1, block2,
"CBC chaining broken: identical plaintext blocks produced identical ciphertext. \
This indicates ECB mode, not CBC!"
"CBC chaining broken: identical plaintext blocks produced identical ciphertext"
);
}
#[test]
fn test_aes_cbc_known_vector() {
// Test with known NIST test vector
// AES-256-CBC with zero key and zero IV
let key = [0u8; 32];
let iv = [0u8; 16];
let plaintext = [0u8; 16];
@@ -407,11 +398,9 @@ mod tests {
let cipher = AesCbc::new(key, iv);
let ciphertext = cipher.encrypt(&plaintext).unwrap();
// Decrypt and verify roundtrip
let decrypted = cipher.decrypt(&ciphertext).unwrap();
assert_eq!(plaintext.as_slice(), decrypted.as_slice());
// Ciphertext should not be all zeros
assert_ne!(ciphertext.as_slice(), plaintext.as_slice());
}
@@ -420,7 +409,6 @@ mod tests {
let key = [0x12u8; 32];
let iv = [0x34u8; 16];
// 5 blocks = 80 bytes
let plaintext: Vec<u8> = (0..80).collect();
let cipher = AesCbc::new(key, iv);
@@ -435,7 +423,7 @@ mod tests {
let key = [0x12u8; 32];
let iv = [0x34u8; 16];
let original = [0x56u8; 48]; // 3 blocks
let original = [0x56u8; 48];
let mut buffer = original;
let cipher = AesCbc::new(key, iv);
@@ -462,41 +450,33 @@ mod tests {
fn test_aes_cbc_unaligned_error() {
let cipher = AesCbc::new([0u8; 32], [0u8; 16]);
// 15 bytes - not aligned to block size
let result = cipher.encrypt(&[0u8; 15]);
assert!(result.is_err());
// 17 bytes - not aligned
let result = cipher.encrypt(&[0u8; 17]);
assert!(result.is_err());
}
#[test]
fn test_aes_cbc_avalanche_effect() {
// Changing one bit in plaintext should change entire ciphertext block
// and all subsequent blocks (due to chaining)
let key = [0xAB; 32];
let iv = [0xCD; 16];
let mut plaintext1 = [0u8; 32];
let plaintext1 = [0u8; 32];
let mut plaintext2 = [0u8; 32];
plaintext2[0] = 0x01; // Single bit difference in first block
plaintext2[0] = 0x01;
let cipher = AesCbc::new(key, iv);
let ciphertext1 = cipher.encrypt(&plaintext1).unwrap();
let ciphertext2 = cipher.encrypt(&plaintext2).unwrap();
// First blocks should be different
assert_ne!(&ciphertext1[0..16], &ciphertext2[0..16]);
// Second blocks should ALSO be different (chaining effect)
assert_ne!(&ciphertext1[16..32], &ciphertext2[16..32]);
}
#[test]
fn test_aes_cbc_iv_matters() {
// Same plaintext with different IVs should produce different ciphertext
let key = [0x55; 32];
let plaintext = [0x77u8; 16];
@@ -511,7 +491,6 @@ mod tests {
#[test]
fn test_aes_cbc_deterministic() {
// Same key, IV, plaintext should always produce same ciphertext
let key = [0x99; 32];
let iv = [0x88; 16];
let plaintext = [0x77u8; 32];
@@ -524,6 +503,23 @@ mod tests {
assert_eq!(ciphertext1, ciphertext2);
}
// ============= Zeroize Tests =============
#[test]
fn test_aes_cbc_zeroize_on_drop() {
let key = [0xAA; 32];
let iv = [0xBB; 16];
let cipher = AesCbc::new(key, iv);
// Verify key/iv are set
assert_eq!(cipher.key, [0xAA; 32]);
assert_eq!(cipher.iv, [0xBB; 16]);
drop(cipher);
// After drop, key/iv are zeroized (can't observe directly,
// but the Drop impl runs without panic)
}
// ============= Error Handling Tests =============
#[test]

View File

@@ -1,3 +1,16 @@
//! Cryptographic hash functions
//!
//! ## Protocol-required algorithms
//!
//! This module exposes MD5 and SHA-1 alongside SHA-256. These weaker
//! hash functions are **required by the Telegram Middle Proxy protocol**
//! (`derive_middleproxy_keys`) and cannot be replaced without breaking
//! compatibility. They are NOT used for any security-sensitive purpose
//! outside of that specific key derivation scheme mandated by Telegram.
//!
//! Static analysis tools (CodeQL, cargo-audit) may flag them — the
//! usages are intentional and protocol-mandated.
use hmac::{Hmac, Mac};
use sha2::Sha256;
use md5::Md5;
@@ -21,14 +34,16 @@ pub fn sha256_hmac(key: &[u8], data: &[u8]) -> [u8; 32] {
mac.finalize().into_bytes().into()
}
/// SHA-1
/// SHA-1 — **protocol-required** by Telegram Middle Proxy key derivation.
/// Not used for general-purpose hashing.
pub fn sha1(data: &[u8]) -> [u8; 20] {
let mut hasher = Sha1::new();
hasher.update(data);
hasher.finalize().into()
}
/// MD5
/// MD5 — **protocol-required** by Telegram Middle Proxy key derivation.
/// Not used for general-purpose hashing.
pub fn md5(data: &[u8]) -> [u8; 16] {
let mut hasher = Md5::new();
hasher.update(data);
@@ -40,7 +55,11 @@ pub fn crc32(data: &[u8]) -> u32 {
crc32fast::hash(data)
}
/// Middle Proxy Keygen
/// Middle Proxy key derivation
///
/// Uses MD5 + SHA-1 as mandated by the Telegram Middle Proxy protocol.
/// These algorithms are NOT replaceable here — changing them would break
/// interoperability with Telegram's middle proxy infrastructure.
pub fn derive_middleproxy_keys(
nonce_srv: &[u8; 16],
nonce_clt: &[u8; 16],

View File

@@ -6,4 +6,4 @@ pub mod random;
pub use aes::{AesCtr, AesCbc};
pub use hash::{sha256, sha256_hmac, sha1, md5, crc32};
pub use random::{SecureRandom, SECURE_RANDOM};
pub use random::SecureRandom;

View File

@@ -3,11 +3,8 @@
use rand::{Rng, RngCore, SeedableRng};
use rand::rngs::StdRng;
use parking_lot::Mutex;
use zeroize::Zeroize;
use crate::crypto::AesCtr;
use once_cell::sync::Lazy;
/// Global secure random instance
pub static SECURE_RANDOM: Lazy<SecureRandom> = Lazy::new(SecureRandom::new);
/// Cryptographically secure PRNG with AES-CTR
pub struct SecureRandom {
@@ -20,18 +17,30 @@ struct SecureRandomInner {
buffer: Vec<u8>,
}
impl Drop for SecureRandomInner {
fn drop(&mut self) {
self.buffer.zeroize();
}
}
impl SecureRandom {
pub fn new() -> Self {
let mut rng = StdRng::from_entropy();
let mut seed_source = rand::rng();
let mut rng = StdRng::from_rng(&mut seed_source);
let mut key = [0u8; 32];
rng.fill_bytes(&mut key);
let iv: u128 = rng.gen();
let iv: u128 = rng.random();
let cipher = AesCtr::new(&key, iv);
// Zeroize local key copy — cipher already consumed it
key.zeroize();
Self {
inner: Mutex::new(SecureRandomInner {
rng,
cipher: AesCtr::new(&key, iv),
cipher,
buffer: Vec::with_capacity(1024),
}),
}
@@ -78,7 +87,6 @@ impl SecureRandom {
result |= (b as u64) << (i * 8);
}
// Mask extra bits
if k < 64 {
result &= (1u64 << k) - 1;
}
@@ -107,13 +115,13 @@ impl SecureRandom {
/// Generate random u32
pub fn u32(&self) -> u32 {
let mut inner = self.inner.lock();
inner.rng.gen()
inner.rng.random()
}
/// Generate random u64
pub fn u64(&self) -> u64 {
let mut inner = self.inner.lock();
inner.rng.gen()
inner.rng.random()
}
}
@@ -162,12 +170,10 @@ mod tests {
fn test_bits() {
let rng = SecureRandom::new();
// Single bit should be 0 or 1
for _ in 0..100 {
assert!(rng.bits(1) <= 1);
}
// 8 bits should be 0-255
for _ in 0..100 {
assert!(rng.bits(8) <= 255);
}
@@ -185,10 +191,8 @@ mod tests {
}
}
// Should have seen all items
assert_eq!(seen.len(), 5);
// Empty slice should return None
let empty: Vec<i32> = vec![];
assert!(rng.choose(&empty).is_none());
}
@@ -201,12 +205,10 @@ mod tests {
let mut shuffled = original.clone();
rng.shuffle(&mut shuffled);
// Should contain same elements
let mut sorted = shuffled.clone();
sorted.sort();
assert_eq!(sorted, original);
// Should be different order (with very high probability)
assert_ne!(shuffled, original);
}
}

View File

@@ -118,16 +118,13 @@ pub trait Recoverable {
impl Recoverable for StreamError {
fn is_recoverable(&self) -> bool {
match self {
// Partial operations can be retried
Self::PartialRead { .. } | Self::PartialWrite { .. } => true,
// I/O errors depend on kind
Self::Io(e) => matches!(
e.kind(),
std::io::ErrorKind::WouldBlock
| std::io::ErrorKind::Interrupted
| std::io::ErrorKind::TimedOut
),
// These are not recoverable
Self::Poisoned { .. }
| Self::BufferOverflow { .. }
| Self::InvalidFrame { .. }
@@ -137,13 +134,9 @@ impl Recoverable for StreamError {
fn can_continue(&self) -> bool {
match self {
// Poisoned stream cannot be used
Self::Poisoned { .. } => false,
// EOF means stream is done
Self::UnexpectedEof => false,
// Buffer overflow is fatal
Self::BufferOverflow { .. } => false,
// Others might allow continuation
_ => true,
}
}
@@ -383,18 +376,18 @@ mod tests {
#[test]
fn test_handshake_result() {
let success: HandshakeResult<i32> = HandshakeResult::Success(42);
let success: HandshakeResult<i32, (), ()> = HandshakeResult::Success(42);
assert!(success.is_success());
assert!(!success.is_bad_client());
let bad: HandshakeResult<i32> = HandshakeResult::BadClient;
let bad: HandshakeResult<i32, (), ()> = HandshakeResult::BadClient { reader: (), writer: () };
assert!(!bad.is_success());
assert!(bad.is_bad_client());
}
#[test]
fn test_handshake_result_map() {
let success: HandshakeResult<i32> = HandshakeResult::Success(42);
let success: HandshakeResult<i32, (), ()> = HandshakeResult::Success(42);
let mapped = success.map(|x| x * 2);
match mapped {

View File

@@ -5,9 +5,11 @@ use std::sync::Arc;
use std::time::Duration;
use tokio::net::TcpListener;
use tokio::signal;
use tracing::{info, error, warn};
use tracing_subscriber::{fmt, EnvFilter};
use tokio::sync::Semaphore;
use tracing::{info, error, warn, debug};
use tracing_subscriber::{fmt, EnvFilter, reload, prelude::*};
mod cli;
mod config;
mod crypto;
mod error;
@@ -18,78 +20,174 @@ mod stream;
mod transport;
mod util;
use crate::config::ProxyConfig;
use crate::config::{ProxyConfig, LogLevel};
use crate::proxy::ClientHandler;
use crate::stats::{Stats, ReplayChecker};
use crate::crypto::SecureRandom;
use crate::transport::{create_listener, ListenOptions, UpstreamManager};
use crate::util::ip::detect_ip;
use crate::stream::BufferPool;
fn parse_cli() -> (String, bool, Option<String>) {
let mut config_path = "config.toml".to_string();
let mut silent = false;
let mut log_level: Option<String> = None;
let args: Vec<String> = std::env::args().skip(1).collect();
// Check for --init first (handled before tokio)
if let Some(init_opts) = cli::parse_init_args(&args) {
if let Err(e) = cli::run_init(init_opts) {
eprintln!("[telemt] Init failed: {}", e);
std::process::exit(1);
}
std::process::exit(0);
}
let mut i = 0;
while i < args.len() {
match args[i].as_str() {
"--silent" | "-s" => { silent = true; }
"--log-level" => {
i += 1;
if i < args.len() { log_level = Some(args[i].clone()); }
}
s if s.starts_with("--log-level=") => {
log_level = Some(s.trim_start_matches("--log-level=").to_string());
}
"--help" | "-h" => {
eprintln!("Usage: telemt [config.toml] [OPTIONS]");
eprintln!();
eprintln!("Options:");
eprintln!(" --silent, -s Suppress info logs");
eprintln!(" --log-level <LEVEL> debug|verbose|normal|silent");
eprintln!(" --help, -h Show this help");
eprintln!();
eprintln!("Setup (fire-and-forget):");
eprintln!(" --init Generate config, install systemd service, start");
eprintln!(" --port <PORT> Listen port (default: 443)");
eprintln!(" --domain <DOMAIN> TLS domain for masking (default: www.google.com)");
eprintln!(" --secret <HEX> 32-char hex secret (auto-generated if omitted)");
eprintln!(" --user <NAME> Username (default: user)");
eprintln!(" --config-dir <DIR> Config directory (default: /etc/telemt)");
eprintln!(" --no-start Don't start the service after install");
std::process::exit(0);
}
s if !s.starts_with('-') => { config_path = s.to_string(); }
other => { eprintln!("Unknown option: {}", other); }
}
i += 1;
}
(config_path, silent, log_level)
}
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
// Initialize logging
fmt()
.with_env_filter(EnvFilter::from_default_env().add_directive("info".parse().unwrap()))
.init();
let (config_path, cli_silent, cli_log_level) = parse_cli();
// Load config
let config_path = std::env::args().nth(1).unwrap_or_else(|| "config.toml".to_string());
let config = match ProxyConfig::load(&config_path) {
Ok(c) => c,
Err(e) => {
// If config doesn't exist, try to create default
if std::path::Path::new(&config_path).exists() {
error!("Failed to load config: {}", e);
eprintln!("[telemt] Error: {}", e);
std::process::exit(1);
} else {
let default = ProxyConfig::default();
let toml = toml::to_string_pretty(&default).unwrap();
std::fs::write(&config_path, toml).unwrap();
info!("Created default config at {}", config_path);
std::fs::write(&config_path, toml::to_string_pretty(&default).unwrap()).unwrap();
eprintln!("[telemt] Created default config at {}", config_path);
default
}
}
};
config.validate()?;
if let Err(e) = config.validate() {
eprintln!("[telemt] Invalid config: {}", e);
std::process::exit(1);
}
// Log loaded configuration for debugging
info!("=== Configuration Loaded ===");
info!("TLS Domain: {}", config.censorship.tls_domain);
info!("Mask enabled: {}", config.censorship.mask);
info!("Mask host: {}", config.censorship.mask_host.as_deref().unwrap_or(&config.censorship.tls_domain));
info!("Mask port: {}", config.censorship.mask_port);
info!("Modes: classic={}, secure={}, tls={}",
let has_rust_log = std::env::var("RUST_LOG").is_ok();
let effective_log_level = if cli_silent {
LogLevel::Silent
} else if let Some(ref s) = cli_log_level {
LogLevel::from_str_loose(s)
} else {
config.general.log_level.clone()
};
// Start with INFO so startup messages are always visible,
// then switch to user-configured level after startup
let (filter_layer, filter_handle) = reload::Layer::new(EnvFilter::new("info"));
tracing_subscriber::registry()
.with(filter_layer)
.with(fmt::Layer::default())
.init();
info!("Telemt MTProxy v{}", env!("CARGO_PKG_VERSION"));
info!("Log level: {}", effective_log_level);
info!("Modes: classic={} secure={} tls={}",
config.general.modes.classic,
config.general.modes.secure,
config.general.modes.tls
);
info!("============================");
config.general.modes.tls);
info!("TLS domain: {}", config.censorship.tls_domain);
info!("Mask: {} -> {}:{}",
config.censorship.mask,
config.censorship.mask_host.as_deref().unwrap_or(&config.censorship.tls_domain),
config.censorship.mask_port);
if config.censorship.tls_domain == "www.google.com" {
warn!("Using default tls_domain. Consider setting a custom domain.");
}
let prefer_ipv6 = config.general.prefer_ipv6;
let config = Arc::new(config);
let stats = Arc::new(Stats::new());
let rng = Arc::new(SecureRandom::new());
// Initialize global ReplayChecker
// Using sharded implementation for better concurrency
let replay_checker = Arc::new(ReplayChecker::new(config.access.replay_check_len));
let replay_checker = Arc::new(ReplayChecker::new(
config.access.replay_check_len,
Duration::from_secs(config.access.replay_window_secs),
));
// Initialize Upstream Manager
let upstream_manager = Arc::new(UpstreamManager::new(config.upstreams.clone()));
// Initialize Buffer Pool
// 16KB buffers, max 4096 buffers (~64MB total cached)
let buffer_pool = Arc::new(BufferPool::with_config(16 * 1024, 4096));
// Start Health Checks
// Connection concurrency limit — prevents OOM under SYN flood / connection storm.
// 10000 is generous; each connection uses ~64KB (2x 16KB relay buffers + overhead).
// 10000 connections ≈ 640MB peak memory.
let max_connections = Arc::new(Semaphore::new(10_000));
// Startup DC ping
info!("=== Telegram DC Connectivity ===");
let ping_results = upstream_manager.ping_all_dcs(prefer_ipv6).await;
for upstream_result in &ping_results {
info!(" via {}", upstream_result.upstream_name);
for dc in &upstream_result.results {
match (&dc.rtt_ms, &dc.error) {
(Some(rtt), _) => {
info!(" DC{} ({:>21}): {:.0}ms", dc.dc_idx, dc.dc_addr, rtt);
}
(None, Some(err)) => {
info!(" DC{} ({:>21}): FAIL ({})", dc.dc_idx, dc.dc_addr, err);
}
_ => {
info!(" DC{} ({:>21}): FAIL", dc.dc_idx, dc.dc_addr);
}
}
}
}
info!("================================");
// Background tasks
let um_clone = upstream_manager.clone();
tokio::spawn(async move {
um_clone.run_health_checks().await;
});
tokio::spawn(async move { um_clone.run_health_checks(prefer_ipv6).await; });
let rc_clone = replay_checker.clone();
tokio::spawn(async move { rc_clone.run_periodic_cleanup().await; });
// Detect public IP if needed (once at startup)
let detected_ip = detect_ip().await;
debug!("Detected IPs: v4={:?} v6={:?}", detected_ip.ipv4, detected_ip.ipv6);
// Start Listeners
let mut listeners = Vec::new();
for listener_conf in &config.server.listeners {
@@ -104,7 +202,6 @@ async fn main() -> Result<(), Box<dyn std::error::Error>> {
let listener = TcpListener::from_std(socket.into())?;
info!("Listening on {}", addr);
// Determine public IP for tg:// links
let public_ip = if let Some(ip) = listener_conf.announce_ip {
ip
} else if listener_conf.ip.is_unspecified() {
@@ -117,33 +214,29 @@ async fn main() -> Result<(), Box<dyn std::error::Error>> {
listener_conf.ip
};
// Show links for configured users
if !config.show_link.is_empty() {
info!("--- Proxy Links for {} ---", public_ip);
info!("--- Proxy Links ({}) ---", public_ip);
for user_name in &config.show_link {
if let Some(secret) = config.access.users.get(user_name) {
info!("User: {}", user_name);
if config.general.modes.classic {
info!(" Classic: tg://proxy?server={}&port={}&secret={}",
public_ip, config.server.port, secret);
}
if config.general.modes.secure {
info!(" DD: tg://proxy?server={}&port={}&secret=dd{}",
public_ip, config.server.port, secret);
}
if config.general.modes.tls {
let domain_hex = hex::encode(&config.censorship.tls_domain);
info!(" EE-TLS: tg://proxy?server={}&port={}&secret=ee{}{}",
public_ip, config.server.port, secret, domain_hex);
}
} else {
warn!("User '{}' specified in show_link not found in users list", user_name);
warn!("User '{}' in show_link not found", user_name);
}
}
info!("-----------------------------------");
info!("------------------------");
}
listeners.push(listener);
@@ -155,17 +248,25 @@ async fn main() -> Result<(), Box<dyn std::error::Error>> {
}
if listeners.is_empty() {
error!("No listeners could be started. Exiting.");
error!("No listeners. Exiting.");
std::process::exit(1);
}
// Accept loop
// Switch to user-configured log level after startup
let runtime_filter = if has_rust_log {
EnvFilter::from_default_env()
} else {
EnvFilter::new(effective_log_level.to_filter_str())
};
filter_handle.reload(runtime_filter).expect("Failed to switch log filter");
for listener in listeners {
let config = config.clone();
let stats = stats.clone();
let upstream_manager = upstream_manager.clone();
let replay_checker = replay_checker.clone();
let buffer_pool = buffer_pool.clone();
let rng = rng.clone();
tokio::spawn(async move {
loop {
@@ -176,18 +277,14 @@ async fn main() -> Result<(), Box<dyn std::error::Error>> {
let upstream_manager = upstream_manager.clone();
let replay_checker = replay_checker.clone();
let buffer_pool = buffer_pool.clone();
let rng = rng.clone();
tokio::spawn(async move {
if let Err(e) = ClientHandler::new(
stream,
peer_addr,
config,
stats,
upstream_manager,
replay_checker,
buffer_pool
stream, peer_addr, config, stats,
upstream_manager, replay_checker, buffer_pool, rng
).run().await {
// Log only relevant errors
debug!(peer = %peer_addr, error = %e, "Connection error");
}
});
}
@@ -200,7 +297,6 @@ async fn main() -> Result<(), Box<dyn std::error::Error>> {
});
}
// Wait for signal
match signal::ctrl_c().await {
Ok(()) => info!("Shutting down..."),
Err(e) => error!("Signal error: {}", e),

View File

@@ -1,13 +1,13 @@
//! Protocol constants and datacenter addresses
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
use once_cell::sync::Lazy;
use std::sync::LazyLock;
// ============= Telegram Datacenters =============
pub const TG_DATACENTER_PORT: u16 = 443;
pub static TG_DATACENTERS_V4: Lazy<Vec<IpAddr>> = Lazy::new(|| {
pub static TG_DATACENTERS_V4: LazyLock<Vec<IpAddr>> = LazyLock::new(|| {
vec![
IpAddr::V4(Ipv4Addr::new(149, 154, 175, 50)),
IpAddr::V4(Ipv4Addr::new(149, 154, 167, 51)),
@@ -17,7 +17,7 @@ pub static TG_DATACENTERS_V4: Lazy<Vec<IpAddr>> = Lazy::new(|| {
]
});
pub static TG_DATACENTERS_V6: Lazy<Vec<IpAddr>> = Lazy::new(|| {
pub static TG_DATACENTERS_V6: LazyLock<Vec<IpAddr>> = LazyLock::new(|| {
vec![
IpAddr::V6("2001:b28:f23d:f001::a".parse().unwrap()),
IpAddr::V6("2001:67c:04e8:f002::a".parse().unwrap()),
@@ -29,8 +29,8 @@ pub static TG_DATACENTERS_V6: Lazy<Vec<IpAddr>> = Lazy::new(|| {
// ============= Middle Proxies (for advertising) =============
pub static TG_MIDDLE_PROXIES_V4: Lazy<std::collections::HashMap<i32, Vec<(IpAddr, u16)>>> =
Lazy::new(|| {
pub static TG_MIDDLE_PROXIES_V4: LazyLock<std::collections::HashMap<i32, Vec<(IpAddr, u16)>>> =
LazyLock::new(|| {
let mut m = std::collections::HashMap::new();
m.insert(1, vec![(IpAddr::V4(Ipv4Addr::new(149, 154, 175, 50)), 8888)]);
m.insert(-1, vec![(IpAddr::V4(Ipv4Addr::new(149, 154, 175, 50)), 8888)]);
@@ -45,8 +45,8 @@ pub static TG_MIDDLE_PROXIES_V4: Lazy<std::collections::HashMap<i32, Vec<(IpAddr
m
});
pub static TG_MIDDLE_PROXIES_V6: Lazy<std::collections::HashMap<i32, Vec<(IpAddr, u16)>>> =
Lazy::new(|| {
pub static TG_MIDDLE_PROXIES_V6: LazyLock<std::collections::HashMap<i32, Vec<(IpAddr, u16)>>> =
LazyLock::new(|| {
let mut m = std::collections::HashMap::new();
m.insert(1, vec![(IpAddr::V6("2001:b28:f23d:f001::d".parse().unwrap()), 8888)]);
m.insert(-1, vec![(IpAddr::V6("2001:b28:f23d:f001::d".parse().unwrap()), 8888)]);
@@ -167,8 +167,6 @@ pub const DEFAULT_ACK_TIMEOUT_SECS: u64 = 300;
// ============= Buffer Sizes =============
/// Default buffer size
/// CHANGED: Reduced from 64KB to 16KB to match TLS record size and align with
/// the new buffering strategy for better iOS upload performance.
pub const DEFAULT_BUFFER_SIZE: usize = 16384;
/// Small buffer size for bad client handling

View File

@@ -1,10 +1,13 @@
//! MTProto Obfuscation
use zeroize::Zeroize;
use crate::crypto::{sha256, AesCtr};
use crate::error::Result;
use super::constants::*;
/// Obfuscation parameters from handshake
///
/// Key material is zeroized on drop.
#[derive(Debug, Clone)]
pub struct ObfuscationParams {
/// Key for decrypting client -> proxy traffic
@@ -21,25 +24,31 @@ pub struct ObfuscationParams {
pub dc_idx: i16,
}
impl Drop for ObfuscationParams {
fn drop(&mut self) {
self.decrypt_key.zeroize();
self.decrypt_iv.zeroize();
self.encrypt_key.zeroize();
self.encrypt_iv.zeroize();
}
}
impl ObfuscationParams {
/// Parse obfuscation parameters from handshake bytes
/// Returns None if handshake doesn't match any user secret
pub fn from_handshake(
handshake: &[u8; HANDSHAKE_LEN],
secrets: &[(String, Vec<u8>)], // (username, secret_bytes)
secrets: &[(String, Vec<u8>)],
) -> Option<(Self, String)> {
// Extract prekey and IV for decryption
let dec_prekey_iv = &handshake[SKIP_LEN..SKIP_LEN + PREKEY_LEN + IV_LEN];
let dec_prekey = &dec_prekey_iv[..PREKEY_LEN];
let dec_iv_bytes = &dec_prekey_iv[PREKEY_LEN..];
// Reversed for encryption direction
let enc_prekey_iv: Vec<u8> = dec_prekey_iv.iter().rev().copied().collect();
let enc_prekey = &enc_prekey_iv[..PREKEY_LEN];
let enc_iv_bytes = &enc_prekey_iv[PREKEY_LEN..];
for (username, secret) in secrets {
// Derive decryption key
let mut dec_key_input = Vec::with_capacity(PREKEY_LEN + secret.len());
dec_key_input.extend_from_slice(dec_prekey);
dec_key_input.extend_from_slice(secret);
@@ -47,26 +56,22 @@ impl ObfuscationParams {
let decrypt_iv = u128::from_be_bytes(dec_iv_bytes.try_into().unwrap());
// Create decryptor and decrypt handshake
let mut decryptor = AesCtr::new(&decrypt_key, decrypt_iv);
let decrypted = decryptor.decrypt(handshake);
// Check protocol tag
let tag_bytes: [u8; 4] = decrypted[PROTO_TAG_POS..PROTO_TAG_POS + 4]
.try_into()
.unwrap();
let proto_tag = match ProtoTag::from_bytes(tag_bytes) {
Some(tag) => tag,
None => continue, // Try next secret
None => continue,
};
// Extract DC index
let dc_idx = i16::from_le_bytes(
decrypted[DC_IDX_POS..DC_IDX_POS + 2].try_into().unwrap()
);
// Derive encryption key
let mut enc_key_input = Vec::with_capacity(PREKEY_LEN + secret.len());
enc_key_input.extend_from_slice(enc_prekey);
enc_key_input.extend_from_slice(secret);
@@ -123,18 +128,15 @@ pub fn generate_nonce<R: FnMut(usize) -> Vec<u8>>(mut random_bytes: R) -> [u8; H
/// Check if nonce is valid (not matching reserved patterns)
pub fn is_valid_nonce(nonce: &[u8; HANDSHAKE_LEN]) -> bool {
// Check first byte
if RESERVED_NONCE_FIRST_BYTES.contains(&nonce[0]) {
return false;
}
// Check first 4 bytes
let first_four: [u8; 4] = nonce[..4].try_into().unwrap();
if RESERVED_NONCE_BEGINNINGS.contains(&first_four) {
return false;
}
// Check bytes 4-7
let continue_four: [u8; 4] = nonce[4..8].try_into().unwrap();
if RESERVED_NONCE_CONTINUES.contains(&continue_four) {
return false;
@@ -147,12 +149,10 @@ pub fn is_valid_nonce(nonce: &[u8; HANDSHAKE_LEN]) -> bool {
pub fn prepare_tg_nonce(
nonce: &mut [u8; HANDSHAKE_LEN],
proto_tag: ProtoTag,
enc_key_iv: Option<&[u8]>, // For fast mode
enc_key_iv: Option<&[u8]>,
) {
// Set protocol tag
nonce[PROTO_TAG_POS..PROTO_TAG_POS + 4].copy_from_slice(&proto_tag.to_bytes());
// For fast mode, copy the reversed enc_key_iv
if let Some(key_iv) = enc_key_iv {
let reversed: Vec<u8> = key_iv.iter().rev().copied().collect();
nonce[SKIP_LEN..SKIP_LEN + KEY_LEN + IV_LEN].copy_from_slice(&reversed);
@@ -161,14 +161,12 @@ pub fn prepare_tg_nonce(
/// Encrypt the outgoing nonce for Telegram
pub fn encrypt_nonce(nonce: &[u8; HANDSHAKE_LEN]) -> Vec<u8> {
// Derive encryption key from the nonce itself
let key_iv = &nonce[SKIP_LEN..SKIP_LEN + KEY_LEN + IV_LEN];
let enc_key = sha256(key_iv);
let enc_iv = u128::from_be_bytes(key_iv[..IV_LEN].try_into().unwrap());
let mut encryptor = AesCtr::new(&enc_key, enc_iv);
// Only encrypt from PROTO_TAG_POS onwards
let mut result = nonce.to_vec();
let encrypted_part = encryptor.encrypt(&nonce[PROTO_TAG_POS..]);
result[PROTO_TAG_POS..].copy_from_slice(&encrypted_part);
@@ -182,22 +180,18 @@ mod tests {
#[test]
fn test_is_valid_nonce() {
// Valid nonce
let mut valid = [0x42u8; HANDSHAKE_LEN];
valid[4..8].copy_from_slice(&[1, 2, 3, 4]);
assert!(is_valid_nonce(&valid));
// Invalid: starts with 0xef
let mut invalid = [0x00u8; HANDSHAKE_LEN];
invalid[0] = 0xef;
assert!(!is_valid_nonce(&invalid));
// Invalid: starts with HEAD
let mut invalid = [0x00u8; HANDSHAKE_LEN];
invalid[..4].copy_from_slice(b"HEAD");
assert!(!is_valid_nonce(&invalid));
// Invalid: bytes 4-7 are zeros
let mut invalid = [0x42u8; HANDSHAKE_LEN];
invalid[4..8].copy_from_slice(&[0, 0, 0, 0]);
assert!(!is_valid_nonce(&invalid));

View File

@@ -4,7 +4,7 @@
//! for domain fronting. The handshake looks like valid TLS 1.3 but
//! actually carries MTProto authentication data.
use crate::crypto::{sha256_hmac, random::SECURE_RANDOM};
use crate::crypto::{sha256_hmac, SecureRandom};
use crate::error::{ProxyError, Result};
use super::constants::*;
use std::time::{SystemTime, UNIX_EPOCH};
@@ -315,8 +315,8 @@ pub fn validate_tls_handshake(
///
/// This generates random bytes that look like a valid X25519 public key.
/// Since we're not doing real TLS, the actual cryptographic properties don't matter.
pub fn gen_fake_x25519_key() -> [u8; 32] {
let bytes = SECURE_RANDOM.bytes(32);
pub fn gen_fake_x25519_key(rng: &SecureRandom) -> [u8; 32] {
let bytes = rng.bytes(32);
bytes.try_into().unwrap()
}
@@ -333,8 +333,9 @@ pub fn build_server_hello(
client_digest: &[u8; TLS_DIGEST_LEN],
session_id: &[u8],
fake_cert_len: usize,
rng: &SecureRandom,
) -> Vec<u8> {
let x25519_key = gen_fake_x25519_key();
let x25519_key = gen_fake_x25519_key(rng);
// Build ServerHello
let server_hello = ServerHelloBuilder::new(session_id.to_vec())
@@ -351,7 +352,7 @@ pub fn build_server_hello(
];
// Build fake certificate (Application Data record)
let fake_cert = SECURE_RANDOM.bytes(fake_cert_len);
let fake_cert = rng.bytes(fake_cert_len);
let mut app_data_record = Vec::with_capacity(5 + fake_cert_len);
app_data_record.push(TLS_RECORD_APPLICATION);
app_data_record.extend_from_slice(&TLS_VERSION);
@@ -489,8 +490,9 @@ mod tests {
#[test]
fn test_gen_fake_x25519_key() {
let key1 = gen_fake_x25519_key();
let key2 = gen_fake_x25519_key();
let rng = SecureRandom::new();
let key1 = gen_fake_x25519_key(&rng);
let key2 = gen_fake_x25519_key(&rng);
assert_eq!(key1.len(), 32);
assert_eq!(key2.len(), 32);
@@ -545,7 +547,8 @@ mod tests {
let client_digest = [0x42u8; 32];
let session_id = vec![0xAA; 32];
let response = build_server_hello(secret, &client_digest, &session_id, 2048);
let rng = SecureRandom::new();
let response = build_server_hello(secret, &client_digest, &session_id, 2048, &rng);
// Should have at least 3 records
assert!(response.len() > 100);
@@ -577,8 +580,9 @@ mod tests {
let client_digest = [0x42u8; 32];
let session_id = vec![0xAA; 32];
let response1 = build_server_hello(secret, &client_digest, &session_id, 1024);
let response2 = build_server_hello(secret, &client_digest, &session_id, 1024);
let rng = SecureRandom::new();
let response1 = build_server_hello(secret, &client_digest, &session_id, 1024, &rng);
let response2 = build_server_hello(secret, &client_digest, &session_id, 1024, &rng);
// Digest position should have non-zero data
let digest1 = &response1[TLS_DIGEST_POS..TLS_DIGEST_POS + TLS_DIGEST_LEN];

View File

@@ -15,9 +15,8 @@ use crate::protocol::tls;
use crate::stats::{Stats, ReplayChecker};
use crate::transport::{configure_client_socket, UpstreamManager};
use crate::stream::{CryptoReader, CryptoWriter, FakeTlsReader, FakeTlsWriter, BufferPool};
use crate::crypto::AesCtr;
use crate::crypto::{AesCtr, SecureRandom};
// Use absolute paths to avoid confusion
use crate::proxy::handshake::{
handle_tls_handshake, handle_mtproto_handshake,
HandshakeSuccess, generate_tg_nonce, encrypt_tg_nonce,
@@ -25,10 +24,8 @@ use crate::proxy::handshake::{
use crate::proxy::relay::relay_bidirectional;
use crate::proxy::masking::handle_bad_client;
/// Client connection handler (builder struct)
pub struct ClientHandler;
/// Running client handler with stream and context
pub struct RunningClientHandler {
stream: TcpStream,
peer: SocketAddr,
@@ -37,10 +34,10 @@ pub struct RunningClientHandler {
replay_checker: Arc<ReplayChecker>,
upstream_manager: Arc<UpstreamManager>,
buffer_pool: Arc<BufferPool>,
rng: Arc<SecureRandom>,
}
impl ClientHandler {
/// Create new client handler instance
pub fn new(
stream: TcpStream,
peer: SocketAddr,
@@ -49,28 +46,22 @@ impl ClientHandler {
upstream_manager: Arc<UpstreamManager>,
replay_checker: Arc<ReplayChecker>,
buffer_pool: Arc<BufferPool>,
rng: Arc<SecureRandom>,
) -> RunningClientHandler {
RunningClientHandler {
stream,
peer,
config,
stats,
replay_checker,
upstream_manager,
buffer_pool,
stream, peer, config, stats, replay_checker,
upstream_manager, buffer_pool, rng,
}
}
}
impl RunningClientHandler {
/// Run the client handler
pub async fn run(mut self) -> Result<()> {
self.stats.increment_connects_all();
let peer = self.peer;
debug!(peer = %peer, "New connection");
// Configure socket
if let Err(e) = configure_client_socket(
&self.stream,
self.config.timeouts.client_keepalive,
@@ -79,16 +70,10 @@ impl RunningClientHandler {
debug!(peer = %peer, error = %e, "Failed to configure client socket");
}
// Perform handshake with timeout
let handshake_timeout = Duration::from_secs(self.config.timeouts.client_handshake);
// Clone stats for error handling block
let stats = self.stats.clone();
let result = timeout(
handshake_timeout,
self.do_handshake()
).await;
let result = timeout(handshake_timeout, self.do_handshake()).await;
match result {
Ok(Ok(())) => {
@@ -107,16 +92,14 @@ impl RunningClientHandler {
}
}
/// Perform handshake and relay
async fn do_handshake(mut self) -> Result<()> {
// Read first bytes to determine handshake type
let mut first_bytes = [0u8; 5];
self.stream.read_exact(&mut first_bytes).await?;
let is_tls = tls::is_tls_handshake(&first_bytes[..3]);
let peer = self.peer;
debug!(peer = %peer, is_tls = is_tls, first_bytes = %hex::encode(&first_bytes), "Handshake type detected");
debug!(peer = %peer, is_tls = is_tls, "Handshake type detected");
if is_tls {
self.handle_tls_client(first_bytes).await
@@ -125,14 +108,9 @@ impl RunningClientHandler {
}
}
/// Handle TLS-wrapped client
async fn handle_tls_client(
mut self,
first_bytes: [u8; 5],
) -> Result<()> {
async fn handle_tls_client(mut self, first_bytes: [u8; 5]) -> Result<()> {
let peer = self.peer;
// Read TLS handshake length
let tls_len = u16::from_be_bytes([first_bytes[3], first_bytes[4]]) as usize;
debug!(peer = %peer, tls_len = tls_len, "Reading TLS handshake");
@@ -140,34 +118,25 @@ impl RunningClientHandler {
if tls_len < 512 {
debug!(peer = %peer, tls_len = tls_len, "TLS handshake too short");
self.stats.increment_connects_bad();
// FIX: Split stream into reader/writer for handle_bad_client
let (reader, writer) = self.stream.into_split();
handle_bad_client(reader, writer, &first_bytes, &self.config).await;
return Ok(());
}
// Read full TLS handshake
let mut handshake = vec![0u8; 5 + tls_len];
handshake[..5].copy_from_slice(&first_bytes);
self.stream.read_exact(&mut handshake[5..]).await?;
// Extract fields before consuming self.stream
let config = self.config.clone();
let replay_checker = self.replay_checker.clone();
let stats = self.stats.clone();
let buffer_pool = self.buffer_pool.clone();
// Split stream for reading/writing
let (read_half, write_half) = self.stream.into_split();
// Handle TLS handshake
let (mut tls_reader, tls_writer, _tls_user) = match handle_tls_handshake(
&handshake,
read_half,
write_half,
peer,
&config,
&replay_checker,
&handshake, read_half, write_half, peer,
&config, &replay_checker, &self.rng,
).await {
HandshakeResult::Success(result) => result,
HandshakeResult::BadClient { reader, writer } => {
@@ -178,83 +147,56 @@ impl RunningClientHandler {
HandshakeResult::Error(e) => return Err(e),
};
// Read MTProto handshake through TLS
debug!(peer = %peer, "Reading MTProto handshake through TLS");
let mtproto_data = tls_reader.read_exact(HANDSHAKE_LEN).await?;
let mtproto_handshake: [u8; HANDSHAKE_LEN] = mtproto_data[..].try_into()
.map_err(|_| ProxyError::InvalidHandshake("Short MTProto handshake".into()))?;
// Handle MTProto handshake
let (crypto_reader, crypto_writer, success) = match handle_mtproto_handshake(
&mtproto_handshake,
tls_reader,
tls_writer,
peer,
&config,
&replay_checker,
true,
&mtproto_handshake, tls_reader, tls_writer, peer,
&config, &replay_checker, true,
).await {
HandshakeResult::Success(result) => result,
HandshakeResult::BadClient { reader, writer } => {
HandshakeResult::BadClient { reader: _, writer: _ } => {
stats.increment_connects_bad();
// Valid TLS but invalid MTProto - drop
debug!(peer = %peer, "Valid TLS but invalid MTProto handshake - dropping");
debug!(peer = %peer, "Valid TLS but invalid MTProto handshake");
return Ok(());
}
HandshakeResult::Error(e) => return Err(e),
};
Self::handle_authenticated_static(
crypto_reader,
crypto_writer,
success,
self.upstream_manager,
self.stats,
self.config,
buffer_pool
crypto_reader, crypto_writer, success,
self.upstream_manager, self.stats, self.config,
buffer_pool, self.rng,
).await
}
/// Handle direct (non-TLS) client
async fn handle_direct_client(
mut self,
first_bytes: [u8; 5],
) -> Result<()> {
async fn handle_direct_client(mut self, first_bytes: [u8; 5]) -> Result<()> {
let peer = self.peer;
// Check if non-TLS modes are enabled
if !self.config.general.modes.classic && !self.config.general.modes.secure {
debug!(peer = %peer, "Non-TLS modes disabled");
self.stats.increment_connects_bad();
// FIX: Split stream into reader/writer for handle_bad_client
let (reader, writer) = self.stream.into_split();
handle_bad_client(reader, writer, &first_bytes, &self.config).await;
return Ok(());
}
// Read rest of handshake
let mut handshake = [0u8; HANDSHAKE_LEN];
handshake[..5].copy_from_slice(&first_bytes);
self.stream.read_exact(&mut handshake[5..]).await?;
// Extract fields
let config = self.config.clone();
let replay_checker = self.replay_checker.clone();
let stats = self.stats.clone();
let buffer_pool = self.buffer_pool.clone();
// Split stream
let (read_half, write_half) = self.stream.into_split();
// Handle MTProto handshake
let (crypto_reader, crypto_writer, success) = match handle_mtproto_handshake(
&handshake,
read_half,
write_half,
peer,
&config,
&replay_checker,
false,
&handshake, read_half, write_half, peer,
&config, &replay_checker, false,
).await {
HandshakeResult::Success(result) => result,
HandshakeResult::BadClient { reader, writer } => {
@@ -266,17 +208,12 @@ impl RunningClientHandler {
};
Self::handle_authenticated_static(
crypto_reader,
crypto_writer,
success,
self.upstream_manager,
self.stats,
self.config,
buffer_pool
crypto_reader, crypto_writer, success,
self.upstream_manager, self.stats, self.config,
buffer_pool, self.rng,
).await
}
/// Static version of handle_authenticated_inner
async fn handle_authenticated_static<R, W>(
client_reader: CryptoReader<R>,
client_writer: CryptoWriter<W>,
@@ -285,6 +222,7 @@ impl RunningClientHandler {
stats: Arc<Stats>,
config: Arc<ProxyConfig>,
buffer_pool: Arc<BufferPool>,
rng: Arc<SecureRandom>,
) -> Result<()>
where
R: AsyncRead + Unpin + Send + 'static,
@@ -292,13 +230,11 @@ impl RunningClientHandler {
{
let user = &success.user;
// Check user limits
if let Err(e) = Self::check_user_limits_static(user, &config, &stats) {
warn!(user = %user, error = %e, "User limit exceeded");
return Err(e);
}
// Get datacenter address
let dc_addr = Self::get_dc_addr_static(success.dc_idx, &config)?;
info!(
@@ -307,71 +243,54 @@ impl RunningClientHandler {
dc = success.dc_idx,
dc_addr = %dc_addr,
proto = ?success.proto_tag,
fast_mode = config.general.fast_mode,
"Connecting to Telegram"
);
// Connect to Telegram via UpstreamManager
let tg_stream = upstream_manager.connect(dc_addr).await?;
// Pass dc_idx for latency-based upstream selection
let tg_stream = upstream_manager.connect(dc_addr, Some(success.dc_idx)).await?;
debug!(peer = %success.peer, dc_addr = %dc_addr, "Connected to Telegram, performing handshake");
debug!(peer = %success.peer, dc_addr = %dc_addr, "Connected, performing TG handshake");
// Perform Telegram handshake and get crypto streams
let (tg_reader, tg_writer) = Self::do_tg_handshake_static(
tg_stream,
&success,
&config,
tg_stream, &success, &config, rng.as_ref(),
).await?;
debug!(peer = %success.peer, "Telegram handshake complete, starting relay");
debug!(peer = %success.peer, "TG handshake complete, starting relay");
// Update stats
stats.increment_user_connects(user);
stats.increment_user_curr_connects(user);
// Relay traffic using buffer pool
let relay_result = relay_bidirectional(
client_reader,
client_writer,
tg_reader,
tg_writer,
user,
Arc::clone(&stats),
buffer_pool,
client_reader, client_writer,
tg_reader, tg_writer,
user, Arc::clone(&stats), buffer_pool,
).await;
// Update stats
stats.decrement_user_curr_connects(user);
match &relay_result {
Ok(()) => debug!(user = %user, peer = %success.peer, "Relay completed normally"),
Err(e) => debug!(user = %user, peer = %success.peer, error = %e, "Relay ended with error"),
Ok(()) => debug!(user = %user, "Relay completed"),
Err(e) => debug!(user = %user, error = %e, "Relay ended with error"),
}
relay_result
}
/// Check user limits (static version)
fn check_user_limits_static(user: &str, config: &ProxyConfig, stats: &Stats) -> Result<()> {
// Check expiration
if let Some(expiration) = config.access.user_expirations.get(user) {
if chrono::Utc::now() > *expiration {
return Err(ProxyError::UserExpired { user: user.to_string() });
}
}
// Check connection limit
if let Some(limit) = config.access.user_max_tcp_conns.get(user) {
let current = stats.get_user_curr_connects(user);
if current >= *limit as u64 {
if stats.get_user_curr_connects(user) >= *limit as u64 {
return Err(ProxyError::ConnectionLimitExceeded { user: user.to_string() });
}
}
// Check data quota
if let Some(quota) = config.access.user_data_quota.get(user) {
let used = stats.get_user_total_octets(user);
if used >= *quota {
if stats.get_user_total_octets(user) >= *quota {
return Err(ProxyError::DataQuotaExceeded { user: user.to_string() });
}
}
@@ -379,62 +298,105 @@ impl RunningClientHandler {
Ok(())
}
/// Get datacenter address by index (static version)
/// Resolve DC index to a target address.
///
/// Matches the C implementation's behavior exactly:
///
/// 1. Look up DC in known clusters (standard DCs ±1..±5)
/// 2. If not found and `force=1` → fall back to `default_cluster`
///
/// In the C code:
/// - `proxy-multi.conf` is downloaded from Telegram, contains only DC ±1..±5
/// - `default 2;` directive sets the default cluster
/// - `mf_cluster_lookup(CurConf, target_dc, 1)` returns default_cluster
/// for any unknown DC (like CDN DC 203)
///
/// So DC 203, DC 101, DC -300, etc. all route to the default DC (2).
/// There is NO modular arithmetic in the C implementation.
fn get_dc_addr_static(dc_idx: i16, config: &ProxyConfig) -> Result<SocketAddr> {
let idx = (dc_idx.abs() - 1) as usize;
let datacenters = if config.general.prefer_ipv6 {
&*TG_DATACENTERS_V6
} else {
&*TG_DATACENTERS_V4
};
datacenters.get(idx)
.map(|ip| SocketAddr::new(*ip, TG_DATACENTER_PORT))
.ok_or_else(|| ProxyError::InvalidHandshake(
format!("Invalid DC index: {}", dc_idx)
))
let num_dcs = datacenters.len(); // 5
// === Step 1: Check dc_overrides (like C's `proxy_for <dc> <ip>:<port>`) ===
let dc_key = dc_idx.to_string();
if let Some(addr_str) = config.dc_overrides.get(&dc_key) {
match addr_str.parse::<SocketAddr>() {
Ok(addr) => {
debug!(dc_idx = dc_idx, addr = %addr, "Using DC override from config");
return Ok(addr);
}
Err(_) => {
warn!(dc_idx = dc_idx, addr_str = %addr_str,
"Invalid DC override address in config, ignoring");
}
}
}
// === Step 2: Standard DCs ±1..±5 — direct lookup ===
let abs_dc = dc_idx.unsigned_abs() as usize;
if abs_dc >= 1 && abs_dc <= num_dcs {
return Ok(SocketAddr::new(datacenters[abs_dc - 1], TG_DATACENTER_PORT));
}
// === Step 3: Unknown DC — fall back to default_cluster ===
// Exactly like C's `mf_cluster_lookup(CurConf, target_dc, force=1)`
// which returns `MC->default_cluster` when the DC is not found.
// Telegram's proxy-multi.conf uses `default 2;`
let default_dc = config.default_dc.unwrap_or(2) as usize;
let fallback_idx = if default_dc >= 1 && default_dc <= num_dcs {
default_dc - 1
} else {
1 // DC 2 (index 1) — matches Telegram's `default 2;`
};
info!(
original_dc = dc_idx,
fallback_dc = (fallback_idx + 1) as u16,
fallback_addr = %datacenters[fallback_idx],
"Special DC ---> default_cluster"
);
Ok(SocketAddr::new(datacenters[fallback_idx], TG_DATACENTER_PORT))
}
/// Perform handshake with Telegram server (static version)
async fn do_tg_handshake_static(
mut stream: TcpStream,
success: &HandshakeSuccess,
config: &ProxyConfig,
rng: &SecureRandom,
) -> Result<(CryptoReader<tokio::net::tcp::OwnedReadHalf>, CryptoWriter<tokio::net::tcp::OwnedWriteHalf>)> {
// Generate nonce with keys for TG
let (nonce, tg_enc_key, tg_enc_iv, tg_dec_key, tg_dec_iv) = generate_tg_nonce(
success.proto_tag,
&success.dec_key, // Client's dec key
&success.dec_key,
success.dec_iv,
rng,
config.general.fast_mode,
);
// Encrypt nonce
let encrypted_nonce = encrypt_tg_nonce(&nonce);
debug!(
peer = %success.peer,
nonce_head = %hex::encode(&nonce[..16]),
encrypted_head = %hex::encode(&encrypted_nonce[..16]),
"Sending nonce to Telegram"
);
// Send to Telegram
stream.write_all(&encrypted_nonce).await?;
stream.flush().await?;
debug!(peer = %success.peer, "Nonce sent to Telegram");
// Split stream and wrap with crypto
let (read_half, write_half) = stream.into_split();
let decryptor = AesCtr::new(&tg_dec_key, tg_dec_iv);
let encryptor = AesCtr::new(&tg_enc_key, tg_enc_iv);
let tg_reader = CryptoReader::new(read_half, decryptor);
let tg_writer = CryptoWriter::new(write_half, encryptor);
Ok((tg_reader, tg_writer))
Ok((
CryptoReader::new(read_half, decryptor),
CryptoWriter::new(write_half, encryptor),
))
}
}

View File

@@ -1,11 +1,11 @@
//! MTProto Handshake Magics
//! MTProto Handshake
use std::net::SocketAddr;
use tokio::io::{AsyncRead, AsyncWrite, AsyncWriteExt};
use tracing::{debug, warn, trace, info};
use zeroize::Zeroize;
use crate::crypto::{sha256, AesCtr};
use crate::crypto::random::SECURE_RANDOM;
use crate::crypto::{sha256, AesCtr, SecureRandom};
use crate::protocol::constants::*;
use crate::protocol::tls;
use crate::stream::{FakeTlsReader, FakeTlsWriter, CryptoReader, CryptoWriter};
@@ -14,6 +14,9 @@ use crate::stats::ReplayChecker;
use crate::config::ProxyConfig;
/// Result of successful handshake
///
/// Key material (`dec_key`, `dec_iv`, `enc_key`, `enc_iv`) is
/// zeroized on drop.
#[derive(Debug, Clone)]
pub struct HandshakeSuccess {
/// Authenticated user name
@@ -34,6 +37,15 @@ pub struct HandshakeSuccess {
pub is_tls: bool,
}
impl Drop for HandshakeSuccess {
fn drop(&mut self) {
self.dec_key.zeroize();
self.dec_iv.zeroize();
self.enc_key.zeroize();
self.enc_iv.zeroize();
}
}
/// Handle fake TLS handshake
pub async fn handle_tls_handshake<R, W>(
handshake: &[u8],
@@ -42,6 +54,7 @@ pub async fn handle_tls_handshake<R, W>(
peer: SocketAddr,
config: &ProxyConfig,
replay_checker: &ReplayChecker,
rng: &SecureRandom,
) -> HandshakeResult<(FakeTlsReader<R>, FakeTlsWriter<W>, String), R, W>
where
R: AsyncRead + Unpin,
@@ -49,30 +62,25 @@ where
{
debug!(peer = %peer, handshake_len = handshake.len(), "Processing TLS handshake");
// Check minimum length
if handshake.len() < tls::TLS_DIGEST_POS + tls::TLS_DIGEST_LEN + 1 {
debug!(peer = %peer, "TLS handshake too short");
return HandshakeResult::BadClient { reader, writer };
}
// Extract digest for replay check
let digest = &handshake[tls::TLS_DIGEST_POS..tls::TLS_DIGEST_POS + tls::TLS_DIGEST_LEN];
let digest_half = &digest[..tls::TLS_DIGEST_HALF_LEN];
// Check for replay
if replay_checker.check_tls_digest(digest_half) {
warn!(peer = %peer, "TLS replay attack detected (duplicate digest)");
return HandshakeResult::BadClient { reader, writer };
}
// Build secrets list
let secrets: Vec<(String, Vec<u8>)> = config.access.users.iter()
.filter_map(|(name, hex)| {
hex::decode(hex).ok().map(|bytes| (name.clone(), bytes))
})
.collect();
// Validate handshake
let validation = match tls::validate_tls_handshake(
handshake,
&secrets,
@@ -89,18 +97,17 @@ where
}
};
// Get secret for response
let secret = match secrets.iter().find(|(name, _)| *name == validation.user) {
Some((_, s)) => s,
None => return HandshakeResult::BadClient { reader, writer },
};
// Build and send response
let response = tls::build_server_hello(
secret,
&validation.digest,
&validation.session_id,
config.censorship.fake_cert_len,
rng,
);
debug!(peer = %peer, response_len = response.len(), "Sending TLS ServerHello");
@@ -115,7 +122,6 @@ where
return HandshakeResult::Error(ProxyError::Io(e));
}
// Record for replay protection only after successful handshake
replay_checker.add_tls_digest(digest_half);
info!(
@@ -147,26 +153,21 @@ where
{
trace!(peer = %peer, handshake = ?hex::encode(handshake), "MTProto handshake bytes");
// Extract prekey and IV
let dec_prekey_iv = &handshake[SKIP_LEN..SKIP_LEN + PREKEY_LEN + IV_LEN];
// Check for replay
if replay_checker.check_handshake(dec_prekey_iv) {
warn!(peer = %peer, "MTProto replay attack detected");
return HandshakeResult::BadClient { reader, writer };
}
// Reversed for encryption direction
let enc_prekey_iv: Vec<u8> = dec_prekey_iv.iter().rev().copied().collect();
// Try each user's secret
for (user, secret_hex) in &config.access.users {
let secret = match hex::decode(secret_hex) {
Ok(s) => s,
Err(_) => continue,
};
// Derive decryption key
let dec_prekey = &dec_prekey_iv[..PREKEY_LEN];
let dec_iv_bytes = &dec_prekey_iv[PREKEY_LEN..];
@@ -177,11 +178,9 @@ where
let dec_iv = u128::from_be_bytes(dec_iv_bytes.try_into().unwrap());
// Decrypt handshake to check protocol tag
let mut decryptor = AesCtr::new(&dec_key, dec_iv);
let decrypted = decryptor.decrypt(handshake);
// Check protocol tag
let tag_bytes: [u8; 4] = decrypted[PROTO_TAG_POS..PROTO_TAG_POS + 4]
.try_into()
.unwrap();
@@ -191,7 +190,6 @@ where
None => continue,
};
// Check if mode is enabled
let mode_ok = match proto_tag {
ProtoTag::Secure => {
if is_tls { config.general.modes.tls } else { config.general.modes.secure }
@@ -204,12 +202,10 @@ where
continue;
}
// Extract DC index
let dc_idx = i16::from_le_bytes(
decrypted[DC_IDX_POS..DC_IDX_POS + 2].try_into().unwrap()
);
// Derive encryption key
let enc_prekey = &enc_prekey_iv[..PREKEY_LEN];
let enc_iv_bytes = &enc_prekey_iv[PREKEY_LEN..];
@@ -220,10 +216,8 @@ where
let enc_iv = u128::from_be_bytes(enc_iv_bytes.try_into().unwrap());
// Record for replay protection
replay_checker.add_handshake(dec_prekey_iv);
// Create new cipher instances
let decryptor = AesCtr::new(&dec_key, dec_iv);
let encryptor = AesCtr::new(&enc_key, enc_iv);
@@ -264,10 +258,11 @@ pub fn generate_tg_nonce(
proto_tag: ProtoTag,
client_dec_key: &[u8; 32],
client_dec_iv: u128,
rng: &SecureRandom,
fast_mode: bool,
) -> ([u8; HANDSHAKE_LEN], [u8; 32], u128, [u8; 32], u128) {
loop {
let bytes = SECURE_RANDOM.bytes(HANDSHAKE_LEN);
let bytes = rng.bytes(HANDSHAKE_LEN);
let mut nonce: [u8; HANDSHAKE_LEN] = bytes.try_into().unwrap();
if RESERVED_NONCE_FIRST_BYTES.contains(&nonce[0]) { continue; }
@@ -323,13 +318,12 @@ mod tests {
let client_dec_key = [0x42u8; 32];
let client_dec_iv = 12345u128;
let (nonce, tg_enc_key, tg_enc_iv, tg_dec_key, tg_dec_iv) =
generate_tg_nonce(ProtoTag::Secure, &client_dec_key, client_dec_iv, false);
let rng = SecureRandom::new();
let (nonce, _tg_enc_key, _tg_enc_iv, _tg_dec_key, _tg_dec_iv) =
generate_tg_nonce(ProtoTag::Secure, &client_dec_key, client_dec_iv, &rng, false);
// Check length
assert_eq!(nonce.len(), HANDSHAKE_LEN);
// Check proto tag is set
let tag_bytes: [u8; 4] = nonce[PROTO_TAG_POS..PROTO_TAG_POS + 4].try_into().unwrap();
assert_eq!(ProtoTag::from_bytes(tag_bytes), Some(ProtoTag::Secure));
}
@@ -339,17 +333,35 @@ mod tests {
let client_dec_key = [0x42u8; 32];
let client_dec_iv = 12345u128;
let rng = SecureRandom::new();
let (nonce, _, _, _, _) =
generate_tg_nonce(ProtoTag::Secure, &client_dec_key, client_dec_iv, false);
generate_tg_nonce(ProtoTag::Secure, &client_dec_key, client_dec_iv, &rng, false);
let encrypted = encrypt_tg_nonce(&nonce);
assert_eq!(encrypted.len(), HANDSHAKE_LEN);
// First PROTO_TAG_POS bytes should be unchanged
assert_eq!(&encrypted[..PROTO_TAG_POS], &nonce[..PROTO_TAG_POS]);
// Rest should be different (encrypted)
assert_ne!(&encrypted[PROTO_TAG_POS..], &nonce[PROTO_TAG_POS..]);
}
#[test]
fn test_handshake_success_zeroize_on_drop() {
let success = HandshakeSuccess {
user: "test".to_string(),
dc_idx: 2,
proto_tag: ProtoTag::Secure,
dec_key: [0xAA; 32],
dec_iv: 0xBBBBBBBB,
enc_key: [0xCC; 32],
enc_iv: 0xDDDDDDDD,
peer: "127.0.0.1:1234".parse().unwrap(),
is_tls: true,
};
assert_eq!(success.dec_key, [0xAA; 32]);
assert_eq!(success.enc_key, [0xCC; 32]);
drop(success);
// Drop impl zeroizes key material without panic
}
}

View File

@@ -9,6 +9,9 @@ use tracing::debug;
use crate::config::ProxyConfig;
const MASK_TIMEOUT: Duration = Duration::from_secs(5);
/// Maximum duration for the entire masking relay.
/// Limits resource consumption from slow-loris attacks and port scanners.
const MASK_RELAY_TIMEOUT: Duration = Duration::from_secs(60);
const MASK_BUFFER_SIZE: usize = 8192;
/// Detect client type based on initial data

View File

@@ -1,20 +1,31 @@
//! Bidirectional Relay
use std::sync::Arc;
use std::time::Duration;
use tokio::io::{AsyncRead, AsyncWrite, AsyncReadExt, AsyncWriteExt};
use tokio::time::Instant;
use tracing::{debug, trace, warn, info};
use crate::error::Result;
use crate::stats::Stats;
use crate::stream::BufferPool;
use std::sync::atomic::{AtomicU64, Ordering};
use std::sync::Arc;
use std::time::Duration;
use tokio::io::{AsyncRead, AsyncWrite, AsyncReadExt, AsyncWriteExt};
use tokio::time::Instant;
use tracing::{debug, trace, warn};
use crate::error::Result;
use crate::stats::Stats;
use crate::stream::BufferPool;
// Activity timeout for iOS compatibility (30 minutes)
const ACTIVITY_TIMEOUT_SECS: u64 = 1800;
// Activity timeout for iOS compatibility (30 minutes)
const ACTIVITY_TIMEOUT_SECS: u64 = 1800;
/// Relay data bidirectionally between client and server
pub async fn relay_bidirectional<CR, CW, SR, SW>(
/// Relay data bidirectionally between client and server.
///
/// Uses a single-task select!-based loop instead of spawning two tasks.
/// This eliminates:
/// - 2× task spawn overhead per connection
/// - Zombie task problem (old code used select! on JoinHandles but
/// never aborted the losing task — it would run for up to 30 min)
/// - Extra Arc<AtomicU64> allocations for cross-task byte counters
///
/// The flush()-per-write was also removed: TCP_NODELAY is set on all
/// sockets (socket.rs), so data is pushed immediately without Nagle
/// buffering. Explicit flush() on every small read was causing a
/// syscall storm and defeating CryptoWriter's internal coalescing.
pub async fn relay_bidirectional<CR, CW, SR, SW>(
mut client_reader: CR,
mut client_writer: CW,
mut server_reader: SR,
@@ -22,241 +33,163 @@ pub async fn relay_bidirectional<CR, CW, SR, SW>(
user: &str,
stats: Arc<Stats>,
buffer_pool: Arc<BufferPool>,
) -> Result<()>
where
) -> Result<()>
where
CR: AsyncRead + Unpin + Send + 'static,
CW: AsyncWrite + Unpin + Send + 'static,
SR: AsyncRead + Unpin + Send + 'static,
SW: AsyncWrite + Unpin + Send + 'static,
{
let user_c2s = user.to_string();
let user_s2c = user.to_string();
{
// Get buffers from pool — one per direction
let mut c2s_buf = buffer_pool.get();
let cap = c2s_buf.capacity();
c2s_buf.resize(cap, 0);
let stats_c2s = Arc::clone(&stats);
let stats_s2c = Arc::clone(&stats);
let c2s_bytes = Arc::new(AtomicU64::new(0));
let s2c_bytes = Arc::new(AtomicU64::new(0));
let c2s_bytes_clone = Arc::clone(&c2s_bytes);
let s2c_bytes_clone = Arc::clone(&s2c_bytes);
let mut s2c_buf = buffer_pool.get();
let cap = s2c_buf.capacity();
s2c_buf.resize(cap, 0);
let activity_timeout = Duration::from_secs(ACTIVITY_TIMEOUT_SECS);
let pool_c2s = buffer_pool.clone();
let pool_s2c = buffer_pool.clone();
let mut c2s_total: u64 = 0;
let mut s2c_total: u64 = 0;
let mut c2s_msgs: u64 = 0;
let mut s2c_msgs: u64 = 0;
// Client -> Server task
let c2s = tokio::spawn(async move {
// Get buffer from pool
let mut pooled_buf = pool_c2s.get();
// CRITICAL FIX: BytesMut from pool has len 0. We must resize it to be usable as &mut [u8].
// We use the full capacity.
let cap = pooled_buf.capacity();
pooled_buf.resize(cap, 0);
let mut total_bytes = 0u64;
let mut prev_total_bytes = 0u64;
let mut msg_count = 0u64;
let mut last_activity = Instant::now();
// For periodic rate logging
let mut c2s_prev: u64 = 0;
let mut s2c_prev: u64 = 0;
let mut last_log = Instant::now();
loop {
// Read with timeout
let read_result = tokio::time::timeout(
activity_timeout,
client_reader.read(&mut pooled_buf)
).await;
match read_result {
Err(_) => {
warn!(
user = %user_c2s,
total_bytes = total_bytes,
msgs = msg_count,
idle_secs = last_activity.elapsed().as_secs(),
"Activity timeout (C->S) - no data received"
);
let _ = server_writer.shutdown().await;
break;
}
Ok(Ok(0)) => {
debug!(
user = %user_c2s,
total_bytes = total_bytes,
msgs = msg_count,
"Client closed connection (C->S)"
);
let _ = server_writer.shutdown().await;
break;
}
Ok(Ok(n)) => {
total_bytes += n as u64;
msg_count += 1;
last_activity = Instant::now();
c2s_bytes_clone.store(total_bytes, Ordering::Relaxed);
stats_c2s.add_user_octets_from(&user_c2s, n as u64);
stats_c2s.increment_user_msgs_from(&user_c2s);
trace!(
user = %user_c2s,
bytes = n,
total = total_bytes,
"C->S data"
);
// Log activity every 10 seconds with correct rate
let elapsed = last_log.elapsed();
if elapsed > Duration::from_secs(10) {
let delta = total_bytes - prev_total_bytes;
let rate = delta as f64 / elapsed.as_secs_f64();
debug!(
user = %user_c2s,
total_bytes = total_bytes,
msgs = msg_count,
rate_kbps = (rate / 1024.0) as u64,
"C->S transfer in progress"
);
last_log = Instant::now();
prev_total_bytes = total_bytes;
}
if let Err(e) = server_writer.write_all(&pooled_buf[..n]).await {
debug!(user = %user_c2s, error = %e, "Failed to write to server");
break;
}
if let Err(e) = server_writer.flush().await {
debug!(user = %user_c2s, error = %e, "Failed to flush to server");
break;
}
}
Ok(Err(e)) => {
debug!(user = %user_c2s, error = %e, total_bytes = total_bytes, "Client read error");
break;
}
}
}
});
// Server -> Client task
let s2c = tokio::spawn(async move {
// Get buffer from pool
let mut pooled_buf = pool_s2c.get();
// CRITICAL FIX: Resize buffer
let cap = pooled_buf.capacity();
pooled_buf.resize(cap, 0);
let mut total_bytes = 0u64;
let mut prev_total_bytes = 0u64;
let mut msg_count = 0u64;
let mut last_activity = Instant::now();
let mut last_log = Instant::now();
let user_owned = user.to_string();
loop {
let read_result = tokio::time::timeout(
activity_timeout,
server_reader.read(&mut pooled_buf)
).await;
match read_result {
Err(_) => {
warn!(
user = %user_s2c,
total_bytes = total_bytes,
msgs = msg_count,
idle_secs = last_activity.elapsed().as_secs(),
"Activity timeout (S->C) - no data received"
);
let _ = client_writer.shutdown().await;
break;
}
Ok(Ok(0)) => {
debug!(
user = %user_s2c,
total_bytes = total_bytes,
msgs = msg_count,
"Server closed connection (S->C)"
);
let _ = client_writer.shutdown().await;
break;
}
Ok(Ok(n)) => {
total_bytes += n as u64;
msg_count += 1;
last_activity = Instant::now();
s2c_bytes_clone.store(total_bytes, Ordering::Relaxed);
stats_s2c.add_user_octets_to(&user_s2c, n as u64);
stats_s2c.increment_user_msgs_to(&user_s2c);
trace!(
user = %user_s2c,
bytes = n,
total = total_bytes,
"S->C data"
);
let elapsed = last_log.elapsed();
if elapsed > Duration::from_secs(10) {
let delta = total_bytes - prev_total_bytes;
let rate = delta as f64 / elapsed.as_secs_f64();
debug!(
user = %user_s2c,
total_bytes = total_bytes,
msgs = msg_count,
rate_kbps = (rate / 1024.0) as u64,
"S->C transfer in progress"
);
last_log = Instant::now();
prev_total_bytes = total_bytes;
}
if let Err(e) = client_writer.write_all(&pooled_buf[..n]).await {
debug!(user = %user_s2c, error = %e, "Failed to write to client");
break;
}
if let Err(e) = client_writer.flush().await {
debug!(user = %user_s2c, error = %e, "Failed to flush to client");
break;
}
}
Ok(Err(e)) => {
debug!(user = %user_s2c, error = %e, total_bytes = total_bytes, "Server read error");
break;
}
}
}
});
// Wait for either direction to complete
tokio::select! {
result = c2s => {
if let Err(e) = result {
warn!(error = %e, "C->S task panicked");
biased;
// Client -> Server direction
result = tokio::time::timeout(activity_timeout, client_reader.read(&mut c2s_buf)) => {
match result {
Err(_) => {
// Activity timeout
warn!(
user = %user_owned,
c2s_bytes = c2s_total,
s2c_bytes = s2c_total,
"Activity timeout (C->S)"
);
break;
}
Ok(Ok(0)) => {
// Client closed
debug!(
user = %user_owned,
c2s_bytes = c2s_total,
s2c_bytes = s2c_total,
"Client closed connection"
);
break;
}
Ok(Ok(n)) => {
c2s_total += n as u64;
c2s_msgs += 1;
stats.add_user_octets_from(&user_owned, n as u64);
stats.increment_user_msgs_from(&user_owned);
trace!(user = %user_owned, bytes = n, "C->S");
// Write without flush — TCP_NODELAY handles push
if let Err(e) = server_writer.write_all(&c2s_buf[..n]).await {
debug!(user = %user_owned, error = %e, "Write to server failed");
break;
}
}
result = s2c => {
if let Err(e) = result {
warn!(error = %e, "S->C task panicked");
Ok(Err(e)) => {
debug!(user = %user_owned, error = %e, "Client read error");
break;
}
}
}
// Server -> Client direction
result = tokio::time::timeout(activity_timeout, server_reader.read(&mut s2c_buf)) => {
match result {
Err(_) => {
warn!(
user = %user_owned,
c2s_bytes = c2s_total,
s2c_bytes = s2c_total,
"Activity timeout (S->C)"
);
break;
}
Ok(Ok(0)) => {
debug!(
c2s_bytes = c2s_bytes.load(Ordering::Relaxed),
s2c_bytes = s2c_bytes.load(Ordering::Relaxed),
user = %user_owned,
c2s_bytes = c2s_total,
s2c_bytes = s2c_total,
"Server closed connection"
);
break;
}
Ok(Ok(n)) => {
s2c_total += n as u64;
s2c_msgs += 1;
stats.add_user_octets_to(&user_owned, n as u64);
stats.increment_user_msgs_to(&user_owned);
trace!(user = %user_owned, bytes = n, "S->C");
if let Err(e) = client_writer.write_all(&s2c_buf[..n]).await {
debug!(user = %user_owned, error = %e, "Write to client failed");
break;
}
}
Ok(Err(e)) => {
debug!(user = %user_owned, error = %e, "Server read error");
break;
}
}
}
}
// Periodic rate logging (every 10s)
let elapsed = last_log.elapsed();
if elapsed > Duration::from_secs(10) {
let secs = elapsed.as_secs_f64();
let c2s_delta = c2s_total - c2s_prev;
let s2c_delta = s2c_total - s2c_prev;
debug!(
user = %user_owned,
c2s_kbps = (c2s_delta as f64 / secs / 1024.0) as u64,
s2c_kbps = (s2c_delta as f64 / secs / 1024.0) as u64,
c2s_total = c2s_total,
s2c_total = s2c_total,
"Relay active"
);
c2s_prev = c2s_total;
s2c_prev = s2c_total;
last_log = Instant::now();
}
}
// Clean shutdown of both directions
let _ = server_writer.shutdown().await;
let _ = client_writer.shutdown().await;
debug!(
user = %user_owned,
c2s_bytes = c2s_total,
s2c_bytes = s2c_total,
c2s_msgs = c2s_msgs,
s2c_msgs = s2c_msgs,
"Relay finished"
);
Ok(())
}
}

View File

@@ -1,31 +1,28 @@
//! Statistics
//! Statistics and replay protection
use std::sync::atomic::{AtomicU64, Ordering};
use std::sync::Arc;
use std::time::Instant;
use std::time::{Instant, Duration};
use dashmap::DashMap;
use parking_lot::{RwLock, Mutex};
use parking_lot::Mutex;
use lru::LruCache;
use std::num::NonZeroUsize;
use std::hash::{Hash, Hasher};
use std::collections::hash_map::DefaultHasher;
use std::collections::VecDeque;
use tracing::debug;
// ============= Stats =============
/// Thread-safe statistics
#[derive(Default)]
pub struct Stats {
// Global counters
connects_all: AtomicU64,
connects_bad: AtomicU64,
handshake_timeouts: AtomicU64,
// Per-user stats
user_stats: DashMap<String, UserStats>,
// Start time
start_time: RwLock<Option<Instant>>,
start_time: parking_lot::RwLock<Option<Instant>>,
}
/// Per-user statistics
#[derive(Default)]
pub struct UserStats {
pub connects: AtomicU64,
@@ -43,42 +40,20 @@ impl Stats {
stats
}
// Global stats
pub fn increment_connects_all(&self) {
self.connects_all.fetch_add(1, Ordering::Relaxed);
}
pub fn increment_connects_all(&self) { self.connects_all.fetch_add(1, Ordering::Relaxed); }
pub fn increment_connects_bad(&self) { self.connects_bad.fetch_add(1, Ordering::Relaxed); }
pub fn increment_handshake_timeouts(&self) { self.handshake_timeouts.fetch_add(1, Ordering::Relaxed); }
pub fn get_connects_all(&self) -> u64 { self.connects_all.load(Ordering::Relaxed) }
pub fn get_connects_bad(&self) -> u64 { self.connects_bad.load(Ordering::Relaxed) }
pub fn increment_connects_bad(&self) {
self.connects_bad.fetch_add(1, Ordering::Relaxed);
}
pub fn increment_handshake_timeouts(&self) {
self.handshake_timeouts.fetch_add(1, Ordering::Relaxed);
}
pub fn get_connects_all(&self) -> u64 {
self.connects_all.load(Ordering::Relaxed)
}
pub fn get_connects_bad(&self) -> u64 {
self.connects_bad.load(Ordering::Relaxed)
}
// User stats
pub fn increment_user_connects(&self, user: &str) {
self.user_stats
.entry(user.to_string())
.or_default()
.connects
.fetch_add(1, Ordering::Relaxed);
self.user_stats.entry(user.to_string()).or_default()
.connects.fetch_add(1, Ordering::Relaxed);
}
pub fn increment_user_curr_connects(&self, user: &str) {
self.user_stats
.entry(user.to_string())
.or_default()
.curr_connects
.fetch_add(1, Ordering::Relaxed);
self.user_stats.entry(user.to_string()).or_default()
.curr_connects.fetch_add(1, Ordering::Relaxed);
}
pub fn decrement_user_curr_connects(&self, user: &str) {
@@ -88,47 +63,33 @@ impl Stats {
}
pub fn get_user_curr_connects(&self, user: &str) -> u64 {
self.user_stats
.get(user)
self.user_stats.get(user)
.map(|s| s.curr_connects.load(Ordering::Relaxed))
.unwrap_or(0)
}
pub fn add_user_octets_from(&self, user: &str, bytes: u64) {
self.user_stats
.entry(user.to_string())
.or_default()
.octets_from_client
.fetch_add(bytes, Ordering::Relaxed);
self.user_stats.entry(user.to_string()).or_default()
.octets_from_client.fetch_add(bytes, Ordering::Relaxed);
}
pub fn add_user_octets_to(&self, user: &str, bytes: u64) {
self.user_stats
.entry(user.to_string())
.or_default()
.octets_to_client
.fetch_add(bytes, Ordering::Relaxed);
self.user_stats.entry(user.to_string()).or_default()
.octets_to_client.fetch_add(bytes, Ordering::Relaxed);
}
pub fn increment_user_msgs_from(&self, user: &str) {
self.user_stats
.entry(user.to_string())
.or_default()
.msgs_from_client
.fetch_add(1, Ordering::Relaxed);
self.user_stats.entry(user.to_string()).or_default()
.msgs_from_client.fetch_add(1, Ordering::Relaxed);
}
pub fn increment_user_msgs_to(&self, user: &str) {
self.user_stats
.entry(user.to_string())
.or_default()
.msgs_to_client
.fetch_add(1, Ordering::Relaxed);
self.user_stats.entry(user.to_string()).or_default()
.msgs_to_client.fetch_add(1, Ordering::Relaxed);
}
pub fn get_user_total_octets(&self, user: &str) -> u64 {
self.user_stats
.get(user)
self.user_stats.get(user)
.map(|s| {
s.octets_from_client.load(Ordering::Relaxed) +
s.octets_to_client.load(Ordering::Relaxed)
@@ -143,57 +104,209 @@ impl Stats {
}
}
/// Sharded Replay attack checker using LRU cache
/// Uses multiple independent LRU caches to reduce lock contention
// ============= Replay Checker =============
pub struct ReplayChecker {
shards: Vec<Mutex<LruCache<Vec<u8>, ()>>>,
shards: Vec<Mutex<ReplayShard>>,
shard_mask: usize,
window: Duration,
checks: AtomicU64,
hits: AtomicU64,
additions: AtomicU64,
cleanups: AtomicU64,
}
struct ReplayEntry {
seen_at: Instant,
seq: u64,
}
struct ReplayShard {
cache: LruCache<Box<[u8]>, ReplayEntry>,
queue: VecDeque<(Instant, Box<[u8]>, u64)>,
seq_counter: u64,
}
impl ReplayShard {
fn new(cap: NonZeroUsize) -> Self {
Self {
cache: LruCache::new(cap),
queue: VecDeque::with_capacity(cap.get()),
seq_counter: 0,
}
}
fn next_seq(&mut self) -> u64 {
self.seq_counter += 1;
self.seq_counter
}
fn cleanup(&mut self, now: Instant, window: Duration) {
if window.is_zero() {
return;
}
let cutoff = now.checked_sub(window).unwrap_or(now);
while let Some((ts, _, _)) = self.queue.front() {
if *ts >= cutoff {
break;
}
let (_, key, queue_seq) = self.queue.pop_front().unwrap();
// Use key.as_ref() to get &[u8] — avoids Borrow<Q> ambiguity
// between Borrow<[u8]> and Borrow<Box<[u8]>>
if let Some(entry) = self.cache.peek(key.as_ref()) {
if entry.seq == queue_seq {
self.cache.pop(key.as_ref());
}
}
}
}
fn check(&mut self, key: &[u8], now: Instant, window: Duration) -> bool {
self.cleanup(now, window);
// key is &[u8], resolves Q=[u8] via Box<[u8]>: Borrow<[u8]>
self.cache.get(key).is_some()
}
fn add(&mut self, key: &[u8], now: Instant, window: Duration) {
self.cleanup(now, window);
let seq = self.next_seq();
let boxed_key: Box<[u8]> = key.into();
self.cache.put(boxed_key.clone(), ReplayEntry { seen_at: now, seq });
self.queue.push_back((now, boxed_key, seq));
}
fn len(&self) -> usize {
self.cache.len()
}
}
impl ReplayChecker {
/// Create new replay checker with specified capacity per shard
/// Total capacity = capacity * num_shards
pub fn new(total_capacity: usize) -> Self {
// Use 64 shards for good concurrency
pub fn new(total_capacity: usize, window: Duration) -> Self {
let num_shards = 64;
let shard_capacity = (total_capacity / num_shards).max(1);
let cap = NonZeroUsize::new(shard_capacity).unwrap();
let mut shards = Vec::with_capacity(num_shards);
for _ in 0..num_shards {
shards.push(Mutex::new(LruCache::new(cap)));
shards.push(Mutex::new(ReplayShard::new(cap)));
}
Self {
shards,
shard_mask: num_shards - 1,
window,
checks: AtomicU64::new(0),
hits: AtomicU64::new(0),
additions: AtomicU64::new(0),
cleanups: AtomicU64::new(0),
}
}
fn get_shard(&self, key: &[u8]) -> usize {
fn get_shard_idx(&self, key: &[u8]) -> usize {
let mut hasher = DefaultHasher::new();
key.hash(&mut hasher);
(hasher.finish() as usize) & self.shard_mask
}
pub fn check_handshake(&self, data: &[u8]) -> bool {
let shard_idx = self.get_shard(data);
self.shards[shard_idx].lock().contains(&data.to_vec())
fn check(&self, data: &[u8]) -> bool {
self.checks.fetch_add(1, Ordering::Relaxed);
let idx = self.get_shard_idx(data);
let mut shard = self.shards[idx].lock();
let found = shard.check(data, Instant::now(), self.window);
if found {
self.hits.fetch_add(1, Ordering::Relaxed);
}
found
}
pub fn add_handshake(&self, data: &[u8]) {
let shard_idx = self.get_shard(data);
self.shards[shard_idx].lock().put(data.to_vec(), ());
fn add(&self, data: &[u8]) {
self.additions.fetch_add(1, Ordering::Relaxed);
let idx = self.get_shard_idx(data);
let mut shard = self.shards[idx].lock();
shard.add(data, Instant::now(), self.window);
}
pub fn check_tls_digest(&self, data: &[u8]) -> bool {
let shard_idx = self.get_shard(data);
self.shards[shard_idx].lock().contains(&data.to_vec())
pub fn check_handshake(&self, data: &[u8]) -> bool { self.check(data) }
pub fn add_handshake(&self, data: &[u8]) { self.add(data) }
pub fn check_tls_digest(&self, data: &[u8]) -> bool { self.check(data) }
pub fn add_tls_digest(&self, data: &[u8]) { self.add(data) }
pub fn stats(&self) -> ReplayStats {
let mut total_entries = 0;
let mut total_queue_len = 0;
for shard in &self.shards {
let s = shard.lock();
total_entries += s.cache.len();
total_queue_len += s.queue.len();
}
pub fn add_tls_digest(&self, data: &[u8]) {
let shard_idx = self.get_shard(data);
self.shards[shard_idx].lock().put(data.to_vec(), ());
ReplayStats {
total_entries,
total_queue_len,
total_checks: self.checks.load(Ordering::Relaxed),
total_hits: self.hits.load(Ordering::Relaxed),
total_additions: self.additions.load(Ordering::Relaxed),
total_cleanups: self.cleanups.load(Ordering::Relaxed),
num_shards: self.shards.len(),
window_secs: self.window.as_secs(),
}
}
pub async fn run_periodic_cleanup(&self) {
let interval = if self.window.as_secs() > 60 {
Duration::from_secs(30)
} else {
Duration::from_secs(self.window.as_secs().max(1) / 2)
};
loop {
tokio::time::sleep(interval).await;
let now = Instant::now();
let mut cleaned = 0usize;
for shard_mutex in &self.shards {
let mut shard = shard_mutex.lock();
let before = shard.len();
shard.cleanup(now, self.window);
let after = shard.len();
cleaned += before.saturating_sub(after);
}
self.cleanups.fetch_add(1, Ordering::Relaxed);
if cleaned > 0 {
debug!(cleaned = cleaned, "Replay checker: periodic cleanup");
}
}
}
}
#[derive(Debug, Clone)]
pub struct ReplayStats {
pub total_entries: usize,
pub total_queue_len: usize,
pub total_checks: u64,
pub total_hits: u64,
pub total_additions: u64,
pub total_cleanups: u64,
pub num_shards: usize,
pub window_secs: u64,
}
impl ReplayStats {
pub fn hit_rate(&self) -> f64 {
if self.total_checks == 0 { 0.0 }
else { (self.total_hits as f64 / self.total_checks as f64) * 100.0 }
}
pub fn ghost_ratio(&self) -> f64 {
if self.total_entries == 0 { 0.0 }
else { self.total_queue_len as f64 / self.total_entries as f64 }
}
}
@@ -204,28 +317,60 @@ mod tests {
#[test]
fn test_stats_shared_counters() {
let stats = Arc::new(Stats::new());
let stats1 = Arc::clone(&stats);
let stats2 = Arc::clone(&stats);
stats1.increment_connects_all();
stats2.increment_connects_all();
stats1.increment_connects_all();
stats.increment_connects_all();
stats.increment_connects_all();
stats.increment_connects_all();
assert_eq!(stats.get_connects_all(), 3);
}
#[test]
fn test_replay_checker_sharding() {
let checker = ReplayChecker::new(100);
let data1 = b"test1";
let data2 = b"test2";
fn test_replay_checker_basic() {
let checker = ReplayChecker::new(100, Duration::from_secs(60));
assert!(!checker.check_handshake(b"test1"));
checker.add_handshake(b"test1");
assert!(checker.check_handshake(b"test1"));
assert!(!checker.check_handshake(b"test2"));
}
checker.add_handshake(data1);
assert!(checker.check_handshake(data1));
assert!(!checker.check_handshake(data2));
#[test]
fn test_replay_checker_duplicate_add() {
let checker = ReplayChecker::new(100, Duration::from_secs(60));
checker.add_handshake(b"dup");
checker.add_handshake(b"dup");
assert!(checker.check_handshake(b"dup"));
}
checker.add_handshake(data2);
assert!(checker.check_handshake(data2));
#[test]
fn test_replay_checker_expiration() {
let checker = ReplayChecker::new(100, Duration::from_millis(50));
checker.add_handshake(b"expire");
assert!(checker.check_handshake(b"expire"));
std::thread::sleep(Duration::from_millis(100));
assert!(!checker.check_handshake(b"expire"));
}
#[test]
fn test_replay_checker_stats() {
let checker = ReplayChecker::new(100, Duration::from_secs(60));
checker.add_handshake(b"k1");
checker.add_handshake(b"k2");
checker.check_handshake(b"k1");
checker.check_handshake(b"k3");
let stats = checker.stats();
assert_eq!(stats.total_additions, 2);
assert_eq!(stats.total_checks, 2);
assert_eq!(stats.total_hits, 1);
}
#[test]
fn test_replay_checker_many_keys() {
let checker = ReplayChecker::new(1000, Duration::from_secs(60));
for i in 0..500u32 {
checker.add(&i.to_le_bytes());
}
for i in 0..500u32 {
assert!(checker.check(&i.to_le_bytes()));
}
assert_eq!(checker.stats().total_entries, 500);
}
}

View File

@@ -5,8 +5,10 @@
use bytes::{Bytes, BytesMut};
use std::io::Result;
use std::sync::Arc;
use crate::protocol::constants::ProtoTag;
use crate::crypto::SecureRandom;
// ============= Frame Types =============
@@ -147,11 +149,11 @@ pub trait FrameCodec: Send + Sync {
// ============= Codec Factory =============
/// Create a frame codec for the given protocol tag
pub fn create_codec(proto_tag: ProtoTag) -> Box<dyn FrameCodec> {
pub fn create_codec(proto_tag: ProtoTag, rng: Arc<SecureRandom>) -> Box<dyn FrameCodec> {
match proto_tag {
ProtoTag::Abridged => Box::new(crate::stream::frame_codec::AbridgedCodec::new()),
ProtoTag::Intermediate => Box::new(crate::stream::frame_codec::IntermediateCodec::new()),
ProtoTag::Secure => Box::new(crate::stream::frame_codec::SecureCodec::new()),
ProtoTag::Secure => Box::new(crate::stream::frame_codec::SecureCodec::new(rng)),
}
}

View File

@@ -5,9 +5,11 @@
use bytes::{Bytes, BytesMut, BufMut};
use std::io::{self, Error, ErrorKind};
use std::sync::Arc;
use tokio_util::codec::{Decoder, Encoder};
use crate::protocol::constants::ProtoTag;
use crate::crypto::SecureRandom;
use super::frame::{Frame, FrameMeta, FrameCodec as FrameCodecTrait};
// ============= Unified Codec =============
@@ -21,14 +23,17 @@ pub struct FrameCodec {
proto_tag: ProtoTag,
/// Maximum allowed frame size
max_frame_size: usize,
/// RNG for secure padding
rng: Arc<SecureRandom>,
}
impl FrameCodec {
/// Create a new codec for the given protocol
pub fn new(proto_tag: ProtoTag) -> Self {
pub fn new(proto_tag: ProtoTag, rng: Arc<SecureRandom>) -> Self {
Self {
proto_tag,
max_frame_size: 16 * 1024 * 1024, // 16MB default
rng,
}
}
@@ -64,7 +69,7 @@ impl Encoder<Frame> for FrameCodec {
match self.proto_tag {
ProtoTag::Abridged => encode_abridged(&frame, dst),
ProtoTag::Intermediate => encode_intermediate(&frame, dst),
ProtoTag::Secure => encode_secure(&frame, dst),
ProtoTag::Secure => encode_secure(&frame, dst, &self.rng),
}
}
}
@@ -288,9 +293,7 @@ fn decode_secure(src: &mut BytesMut, max_size: usize) -> io::Result<Option<Frame
Ok(Some(Frame::with_meta(data, meta)))
}
fn encode_secure(frame: &Frame, dst: &mut BytesMut) -> io::Result<()> {
use crate::crypto::random::SECURE_RANDOM;
fn encode_secure(frame: &Frame, dst: &mut BytesMut, rng: &SecureRandom) -> io::Result<()> {
let data = &frame.data;
// Simple ACK: just send data
@@ -303,10 +306,10 @@ fn encode_secure(frame: &Frame, dst: &mut BytesMut) -> io::Result<()> {
// Generate padding to make length not divisible by 4
let padding_len = if data.len() % 4 == 0 {
// Add 1-3 bytes to make it non-aligned
(SECURE_RANDOM.range(3) + 1) as usize
(rng.range(3) + 1) as usize
} else {
// Already non-aligned, can add 0-3
SECURE_RANDOM.range(4) as usize
rng.range(4) as usize
};
let total_len = data.len() + padding_len;
@@ -321,7 +324,7 @@ fn encode_secure(frame: &Frame, dst: &mut BytesMut) -> io::Result<()> {
dst.extend_from_slice(data);
if padding_len > 0 {
let padding = SECURE_RANDOM.bytes(padding_len);
let padding = rng.bytes(padding_len);
dst.extend_from_slice(&padding);
}
@@ -445,19 +448,21 @@ impl FrameCodecTrait for IntermediateCodec {
/// Secure Intermediate protocol codec
pub struct SecureCodec {
max_frame_size: usize,
rng: Arc<SecureRandom>,
}
impl SecureCodec {
pub fn new() -> Self {
pub fn new(rng: Arc<SecureRandom>) -> Self {
Self {
max_frame_size: 16 * 1024 * 1024,
rng,
}
}
}
impl Default for SecureCodec {
fn default() -> Self {
Self::new()
Self::new(Arc::new(SecureRandom::new()))
}
}
@@ -474,7 +479,7 @@ impl Encoder<Frame> for SecureCodec {
type Error = io::Error;
fn encode(&mut self, frame: Frame, dst: &mut BytesMut) -> Result<(), Self::Error> {
encode_secure(&frame, dst)
encode_secure(&frame, dst, &self.rng)
}
}
@@ -485,7 +490,7 @@ impl FrameCodecTrait for SecureCodec {
fn encode(&self, frame: &Frame, dst: &mut BytesMut) -> io::Result<usize> {
let before = dst.len();
encode_secure(frame, dst)?;
encode_secure(frame, dst, &self.rng)?;
Ok(dst.len() - before)
}
@@ -506,6 +511,8 @@ mod tests {
use tokio_util::codec::{FramedRead, FramedWrite};
use tokio::io::duplex;
use futures::{SinkExt, StreamExt};
use crate::crypto::SecureRandom;
use std::sync::Arc;
#[tokio::test]
async fn test_framed_abridged() {
@@ -541,8 +548,8 @@ mod tests {
async fn test_framed_secure() {
let (client, server) = duplex(4096);
let mut writer = FramedWrite::new(client, SecureCodec::new());
let mut reader = FramedRead::new(server, SecureCodec::new());
let mut writer = FramedWrite::new(client, SecureCodec::new(Arc::new(SecureRandom::new())));
let mut reader = FramedRead::new(server, SecureCodec::new(Arc::new(SecureRandom::new())));
let original = Bytes::from_static(&[1, 2, 3, 4, 5, 6, 7, 8]);
let frame = Frame::new(original.clone());
@@ -557,8 +564,8 @@ mod tests {
for proto_tag in [ProtoTag::Abridged, ProtoTag::Intermediate, ProtoTag::Secure] {
let (client, server) = duplex(4096);
let mut writer = FramedWrite::new(client, FrameCodec::new(proto_tag));
let mut reader = FramedRead::new(server, FrameCodec::new(proto_tag));
let mut writer = FramedWrite::new(client, FrameCodec::new(proto_tag, Arc::new(SecureRandom::new())));
let mut reader = FramedRead::new(server, FrameCodec::new(proto_tag, Arc::new(SecureRandom::new())));
// Use 4-byte aligned data for abridged compatibility
let original = Bytes::from_static(&[1, 2, 3, 4, 5, 6, 7, 8]);
@@ -607,7 +614,7 @@ mod tests {
#[test]
fn test_frame_too_large() {
let mut codec = FrameCodec::new(ProtoTag::Intermediate)
let mut codec = FrameCodec::new(ProtoTag::Intermediate, Arc::new(SecureRandom::new()))
.with_max_frame_size(100);
// Create a "frame" that claims to be very large

View File

@@ -4,8 +4,8 @@ use bytes::{Bytes, BytesMut};
use std::io::{Error, ErrorKind, Result};
use tokio::io::{AsyncRead, AsyncWrite, AsyncReadExt, AsyncWriteExt};
use crate::protocol::constants::*;
use crate::crypto::crc32;
use crate::crypto::random::SECURE_RANDOM;
use crate::crypto::{crc32, SecureRandom};
use std::sync::Arc;
use super::traits::{FrameMeta, LayeredStream};
// ============= Abridged (Compact) Frame =============
@@ -251,11 +251,12 @@ impl<R> LayeredStream<R> for SecureIntermediateFrameReader<R> {
/// Writer for secure intermediate MTProto framing
pub struct SecureIntermediateFrameWriter<W> {
upstream: W,
rng: Arc<SecureRandom>,
}
impl<W> SecureIntermediateFrameWriter<W> {
pub fn new(upstream: W) -> Self {
Self { upstream }
pub fn new(upstream: W, rng: Arc<SecureRandom>) -> Self {
Self { upstream, rng }
}
}
@@ -267,8 +268,8 @@ impl<W: AsyncWrite + Unpin> SecureIntermediateFrameWriter<W> {
}
// Add random padding (0-3 bytes)
let padding_len = SECURE_RANDOM.range(4);
let padding = SECURE_RANDOM.bytes(padding_len);
let padding_len = self.rng.range(4);
let padding = self.rng.bytes(padding_len);
let total_len = data.len() + padding_len;
let len_bytes = (total_len as u32).to_le_bytes();
@@ -454,11 +455,11 @@ pub enum FrameWriterKind<W> {
}
impl<W: AsyncWrite + Unpin> FrameWriterKind<W> {
pub fn new(upstream: W, proto_tag: ProtoTag) -> Self {
pub fn new(upstream: W, proto_tag: ProtoTag, rng: Arc<SecureRandom>) -> Self {
match proto_tag {
ProtoTag::Abridged => FrameWriterKind::Abridged(AbridgedFrameWriter::new(upstream)),
ProtoTag::Intermediate => FrameWriterKind::Intermediate(IntermediateFrameWriter::new(upstream)),
ProtoTag::Secure => FrameWriterKind::SecureIntermediate(SecureIntermediateFrameWriter::new(upstream)),
ProtoTag::Secure => FrameWriterKind::SecureIntermediate(SecureIntermediateFrameWriter::new(upstream, rng)),
}
}
@@ -483,6 +484,8 @@ impl<W: AsyncWrite + Unpin> FrameWriterKind<W> {
mod tests {
use super::*;
use tokio::io::duplex;
use std::sync::Arc;
use crate::crypto::SecureRandom;
#[tokio::test]
async fn test_abridged_roundtrip() {
@@ -539,7 +542,7 @@ mod tests {
async fn test_secure_intermediate_padding() {
let (client, server) = duplex(1024);
let mut writer = SecureIntermediateFrameWriter::new(client);
let mut writer = SecureIntermediateFrameWriter::new(client, Arc::new(SecureRandom::new()));
let mut reader = SecureIntermediateFrameReader::new(server);
let data = vec![1u8, 2, 3, 4, 5, 6, 7, 8];
@@ -572,7 +575,7 @@ mod tests {
async fn test_frame_reader_kind() {
let (client, server) = duplex(1024);
let mut writer = FrameWriterKind::new(client, ProtoTag::Intermediate);
let mut writer = FrameWriterKind::new(client, ProtoTag::Intermediate, Arc::new(SecureRandom::new()));
let mut reader = FrameReaderKind::new(server, ProtoTag::Intermediate);
let data = vec![1u8, 2, 3, 4];

View File

@@ -10,4 +10,4 @@ pub use pool::ConnectionPool;
pub use proxy_protocol::{ProxyProtocolInfo, parse_proxy_protocol};
pub use socket::*;
pub use socks::*;
pub use upstream::UpstreamManager;
pub use upstream::{UpstreamManager, StartupPingResult, DcPingResult};

View File

@@ -1,26 +1,128 @@
//! Upstream Management
//! Upstream Management with per-DC latency-weighted selection
use std::net::{SocketAddr, IpAddr};
use std::sync::Arc;
use std::time::Duration;
use tokio::net::TcpStream;
use tokio::sync::RwLock;
use tokio::time::Instant;
use rand::Rng;
use tracing::{debug, warn, error, info};
use tracing::{debug, warn, info, trace};
use crate::config::{UpstreamConfig, UpstreamType};
use crate::error::{Result, ProxyError};
use crate::protocol::constants::{TG_DATACENTERS_V4, TG_DATACENTERS_V6, TG_DATACENTER_PORT};
use crate::transport::socket::create_outgoing_socket_bound;
use crate::transport::socks::{connect_socks4, connect_socks5};
/// Number of Telegram datacenters
const NUM_DCS: usize = 5;
// ============= RTT Tracking =============
#[derive(Debug, Clone, Copy)]
struct LatencyEma {
value_ms: Option<f64>,
alpha: f64,
}
impl LatencyEma {
const fn new(alpha: f64) -> Self {
Self { value_ms: None, alpha }
}
fn update(&mut self, sample_ms: f64) {
self.value_ms = Some(match self.value_ms {
None => sample_ms,
Some(prev) => prev * (1.0 - self.alpha) + sample_ms * self.alpha,
});
}
fn get(&self) -> Option<f64> {
self.value_ms
}
}
// ============= Upstream State =============
#[derive(Debug)]
struct UpstreamState {
config: UpstreamConfig,
healthy: bool,
fails: u32,
last_check: std::time::Instant,
/// Per-DC latency EMA (index 0 = DC1, index 4 = DC5)
dc_latency: [LatencyEma; NUM_DCS],
}
impl UpstreamState {
fn new(config: UpstreamConfig) -> Self {
Self {
config,
healthy: true,
fails: 0,
last_check: std::time::Instant::now(),
dc_latency: [LatencyEma::new(0.3); NUM_DCS],
}
}
/// Map DC index to latency array slot (0..NUM_DCS).
///
/// Matches the C implementation's `mf_cluster_lookup` behavior:
/// - Standard DCs ±1..±5 → direct mapping to array index 0..4
/// - Unknown DCs (CDN, media, etc.) → default DC slot (index 1 = DC 2)
/// This matches Telegram's `default 2;` in proxy-multi.conf.
/// - There is NO modular arithmetic in the C implementation.
fn dc_array_idx(dc_idx: i16) -> Option<usize> {
let abs_dc = dc_idx.unsigned_abs() as usize;
if abs_dc == 0 {
return None;
}
if abs_dc >= 1 && abs_dc <= NUM_DCS {
Some(abs_dc - 1)
} else {
// Unknown DC → default cluster (DC 2, index 1)
// Same as C: mf_cluster_lookup returns default_cluster
Some(1)
}
}
/// Get latency for a specific DC, falling back to average across all known DCs
fn effective_latency(&self, dc_idx: Option<i16>) -> Option<f64> {
// Try DC-specific latency first
if let Some(di) = dc_idx.and_then(Self::dc_array_idx) {
if let Some(ms) = self.dc_latency[di].get() {
return Some(ms);
}
}
// Fallback: average of all known DC latencies
let (sum, count) = self.dc_latency.iter()
.filter_map(|l| l.get())
.fold((0.0, 0u32), |(s, c), v| (s + v, c + 1));
if count > 0 { Some(sum / count as f64) } else { None }
}
}
/// Result of a single DC ping
#[derive(Debug, Clone)]
pub struct DcPingResult {
pub dc_idx: usize,
pub dc_addr: SocketAddr,
pub rtt_ms: Option<f64>,
pub error: Option<String>,
}
/// Result of startup ping for one upstream
#[derive(Debug, Clone)]
pub struct StartupPingResult {
pub results: Vec<DcPingResult>,
pub upstream_name: String,
}
// ============= Upstream Manager =============
#[derive(Clone)]
pub struct UpstreamManager {
upstreams: Arc<RwLock<Vec<UpstreamState>>>,
@@ -30,12 +132,7 @@ impl UpstreamManager {
pub fn new(configs: Vec<UpstreamConfig>) -> Self {
let states = configs.into_iter()
.filter(|c| c.enabled)
.map(|c| UpstreamState {
config: c,
healthy: true, // Optimistic start
fails: 0,
last_check: std::time::Instant::now(),
})
.map(UpstreamState::new)
.collect();
Self {
@@ -43,48 +140,78 @@ impl UpstreamManager {
}
}
/// Select an upstream using Weighted Round Robin (simplified)
async fn select_upstream(&self) -> Option<usize> {
/// Select upstream using latency-weighted random selection.
///
/// `effective_weight = config_weight × latency_factor`
///
/// where `latency_factor = 1000 / latency_ms` if latency is known,
/// or `1.0` if no latency data is available.
///
/// This means a 50ms upstream gets factor 20, a 200ms upstream gets
/// factor 5 — the faster route is 4× more likely to be chosen
/// (all else being equal).
async fn select_upstream(&self, dc_idx: Option<i16>) -> Option<usize> {
let upstreams = self.upstreams.read().await;
if upstreams.is_empty() {
return None;
}
let healthy_indices: Vec<usize> = upstreams.iter()
let healthy: Vec<usize> = upstreams.iter()
.enumerate()
.filter(|(_, u)| u.healthy)
.map(|(i, _)| i)
.collect();
if healthy_indices.is_empty() {
// If all unhealthy, try any random one
return Some(rand::thread_rng().gen_range(0..upstreams.len()));
if healthy.is_empty() {
// All unhealthy — pick any
return Some(rand::rng().gen_range(0..upstreams.len()));
}
// Weighted selection
let total_weight: u32 = healthy_indices.iter()
.map(|&i| upstreams[i].config.weight as u32)
.sum();
if total_weight == 0 {
return Some(healthy_indices[rand::thread_rng().gen_range(0..healthy_indices.len())]);
if healthy.len() == 1 {
return Some(healthy[0]);
}
let mut choice = rand::thread_rng().gen_range(0..total_weight);
// Calculate latency-weighted scores
let weights: Vec<(usize, f64)> = healthy.iter().map(|&i| {
let base = upstreams[i].config.weight as f64;
let latency_factor = upstreams[i].effective_latency(dc_idx)
.map(|ms| if ms > 1.0 { 1000.0 / ms } else { 1000.0 })
.unwrap_or(1.0);
for &idx in &healthy_indices {
let weight = upstreams[idx].config.weight as u32;
(i, base * latency_factor)
}).collect();
let total: f64 = weights.iter().map(|(_, w)| w).sum();
if total <= 0.0 {
return Some(healthy[rand::rng().gen_range(0..healthy.len())]);
}
let mut choice: f64 = rand::rng().gen_range(0.0..total);
for &(idx, weight) in &weights {
if choice < weight {
trace!(
upstream = idx,
dc = ?dc_idx,
weight = format!("{:.2}", weight),
total = format!("{:.2}", total),
"Upstream selected"
);
return Some(idx);
}
choice -= weight;
}
Some(healthy_indices[0])
Some(healthy[0])
}
pub async fn connect(&self, target: SocketAddr) -> Result<TcpStream> {
let idx = self.select_upstream().await
/// Connect to target through a selected upstream.
///
/// `dc_idx` is used for latency-based upstream selection and RTT tracking.
/// Pass `None` if DC index is unknown.
pub async fn connect(&self, target: SocketAddr, dc_idx: Option<i16>) -> Result<TcpStream> {
let idx = self.select_upstream(dc_idx).await
.ok_or_else(|| ProxyError::Config("No upstreams available".to_string()))?;
let upstream = {
@@ -92,28 +219,34 @@ impl UpstreamManager {
guard[idx].config.clone()
};
let start = Instant::now();
match self.connect_via_upstream(&upstream, target).await {
Ok(stream) => {
// Mark success
let rtt_ms = start.elapsed().as_secs_f64() * 1000.0;
let mut guard = self.upstreams.write().await;
if let Some(u) = guard.get_mut(idx) {
if !u.healthy {
debug!("Upstream recovered: {:?}", u.config);
debug!(rtt_ms = format!("{:.1}", rtt_ms), "Upstream recovered");
}
u.healthy = true;
u.fails = 0;
// Store per-DC latency
if let Some(di) = dc_idx.and_then(UpstreamState::dc_array_idx) {
u.dc_latency[di].update(rtt_ms);
}
}
Ok(stream)
},
Err(e) => {
// Mark failure
let mut guard = self.upstreams.write().await;
if let Some(u) = guard.get_mut(idx) {
u.fails += 1;
warn!("Failed to connect via upstream {:?}: {}. Fails: {}", u.config, e, u.fails);
warn!(fails = u.fails, "Upstream failed: {}", e);
if u.fails > 3 {
u.healthy = false;
warn!("Upstream disabled due to failures: {:?}", u.config);
warn!("Upstream marked unhealthy");
}
}
Err(e)
@@ -129,18 +262,16 @@ impl UpstreamManager {
let socket = create_outgoing_socket_bound(target, bind_ip)?;
// Non-blocking connect logic
socket.set_nonblocking(true)?;
match socket.connect(&target.into()) {
Ok(()) => {},
Err(err) if err.raw_os_error() == Some(115) || err.kind() == std::io::ErrorKind::WouldBlock => {},
Err(err) if err.raw_os_error() == Some(libc::EINPROGRESS) || err.kind() == std::io::ErrorKind::WouldBlock => {},
Err(err) => return Err(ProxyError::Io(err)),
}
let std_stream: std::net::TcpStream = socket.into();
let stream = TcpStream::from_std(std_stream)?;
// Wait for connection to complete
stream.writable().await?;
if let Some(e) = stream.take_error()? {
return Err(ProxyError::Io(e));
@@ -149,8 +280,6 @@ impl UpstreamManager {
Ok(stream)
},
UpstreamType::Socks4 { address, interface, user_id } => {
info!("Connecting to target {} via SOCKS4 proxy {}", target, address);
let proxy_addr: SocketAddr = address.parse()
.map_err(|_| ProxyError::Config("Invalid SOCKS4 address".to_string()))?;
@@ -159,18 +288,16 @@ impl UpstreamManager {
let socket = create_outgoing_socket_bound(proxy_addr, bind_ip)?;
// Non-blocking connect logic
socket.set_nonblocking(true)?;
match socket.connect(&proxy_addr.into()) {
Ok(()) => {},
Err(err) if err.raw_os_error() == Some(115) || err.kind() == std::io::ErrorKind::WouldBlock => {},
Err(err) if err.raw_os_error() == Some(libc::EINPROGRESS) || err.kind() == std::io::ErrorKind::WouldBlock => {},
Err(err) => return Err(ProxyError::Io(err)),
}
let std_stream: std::net::TcpStream = socket.into();
let mut stream = TcpStream::from_std(std_stream)?;
// Wait for connection to complete
stream.writable().await?;
if let Some(e) = stream.take_error()? {
return Err(ProxyError::Io(e));
@@ -180,8 +307,6 @@ impl UpstreamManager {
Ok(stream)
},
UpstreamType::Socks5 { address, interface, username, password } => {
info!("Connecting to target {} via SOCKS5 proxy {}", target, address);
let proxy_addr: SocketAddr = address.parse()
.map_err(|_| ProxyError::Config("Invalid SOCKS5 address".to_string()))?;
@@ -190,18 +315,16 @@ impl UpstreamManager {
let socket = create_outgoing_socket_bound(proxy_addr, bind_ip)?;
// Non-blocking connect logic
socket.set_nonblocking(true)?;
match socket.connect(&proxy_addr.into()) {
Ok(()) => {},
Err(err) if err.raw_os_error() == Some(115) || err.kind() == std::io::ErrorKind::WouldBlock => {},
Err(err) if err.raw_os_error() == Some(libc::EINPROGRESS) || err.kind() == std::io::ErrorKind::WouldBlock => {},
Err(err) => return Err(ProxyError::Io(err)),
}
let std_stream: std::net::TcpStream = socket.into();
let mut stream = TcpStream::from_std(std_stream)?;
// Wait for connection to complete
stream.writable().await?;
if let Some(e) = stream.take_error()? {
return Err(ProxyError::Io(e));
@@ -213,13 +336,100 @@ impl UpstreamManager {
}
}
/// Background task to check health
pub async fn run_health_checks(&self) {
// Simple TCP connect check to a known stable DC (e.g. 149.154.167.50:443 - DC2)
let check_target: SocketAddr = "149.154.167.50:443".parse().unwrap();
// ============= Startup Ping =============
/// Ping all Telegram DCs through all upstreams.
pub async fn ping_all_dcs(&self, prefer_ipv6: bool) -> Vec<StartupPingResult> {
let upstreams: Vec<(usize, UpstreamConfig)> = {
let guard = self.upstreams.read().await;
guard.iter().enumerate()
.map(|(i, u)| (i, u.config.clone()))
.collect()
};
let datacenters = if prefer_ipv6 { &*TG_DATACENTERS_V6 } else { &*TG_DATACENTERS_V4 };
let mut all_results = Vec::new();
for (upstream_idx, upstream_config) in &upstreams {
let upstream_name = match &upstream_config.upstream_type {
UpstreamType::Direct { interface } => {
format!("direct{}", interface.as_ref().map(|i| format!(" ({})", i)).unwrap_or_default())
}
UpstreamType::Socks4 { address, .. } => format!("socks4://{}", address),
UpstreamType::Socks5 { address, .. } => format!("socks5://{}", address),
};
let mut dc_results = Vec::new();
for (dc_zero_idx, dc_ip) in datacenters.iter().enumerate() {
let dc_addr = SocketAddr::new(*dc_ip, TG_DATACENTER_PORT);
let ping_result = tokio::time::timeout(
Duration::from_secs(5),
self.ping_single_dc(upstream_config, dc_addr)
).await;
let result = match ping_result {
Ok(Ok(rtt_ms)) => {
// Store per-DC latency
let mut guard = self.upstreams.write().await;
if let Some(u) = guard.get_mut(*upstream_idx) {
u.dc_latency[dc_zero_idx].update(rtt_ms);
}
DcPingResult {
dc_idx: dc_zero_idx + 1,
dc_addr,
rtt_ms: Some(rtt_ms),
error: None,
}
}
Ok(Err(e)) => DcPingResult {
dc_idx: dc_zero_idx + 1,
dc_addr,
rtt_ms: None,
error: Some(e.to_string()),
},
Err(_) => DcPingResult {
dc_idx: dc_zero_idx + 1,
dc_addr,
rtt_ms: None,
error: Some("timeout (5s)".to_string()),
},
};
dc_results.push(result);
}
all_results.push(StartupPingResult {
results: dc_results,
upstream_name,
});
}
all_results
}
async fn ping_single_dc(&self, config: &UpstreamConfig, target: SocketAddr) -> Result<f64> {
let start = Instant::now();
let _stream = self.connect_via_upstream(config, target).await?;
Ok(start.elapsed().as_secs_f64() * 1000.0)
}
// ============= Health Checks =============
/// Background health check: rotates through DCs, 30s interval.
pub async fn run_health_checks(&self, prefer_ipv6: bool) {
let datacenters = if prefer_ipv6 { &*TG_DATACENTERS_V6 } else { &*TG_DATACENTERS_V4 };
let mut dc_rotation = 0usize;
loop {
tokio::time::sleep(Duration::from_secs(60)).await;
tokio::time::sleep(Duration::from_secs(30)).await;
let dc_zero_idx = dc_rotation % datacenters.len();
dc_rotation += 1;
let check_target = SocketAddr::new(datacenters[dc_zero_idx], TG_DATACENTER_PORT);
let count = self.upstreams.read().await.len();
for i in 0..count {
@@ -228,6 +438,7 @@ impl UpstreamManager {
guard[i].config.clone()
};
let start = Instant::now();
let result = tokio::time::timeout(
Duration::from_secs(10),
self.connect_via_upstream(&config, check_target)
@@ -238,18 +449,36 @@ impl UpstreamManager {
match result {
Ok(Ok(_stream)) => {
let rtt_ms = start.elapsed().as_secs_f64() * 1000.0;
u.dc_latency[dc_zero_idx].update(rtt_ms);
if !u.healthy {
debug!("Upstream recovered: {:?}", u.config);
info!(
rtt = format!("{:.0}ms", rtt_ms),
dc = dc_zero_idx + 1,
"Upstream recovered"
);
}
u.healthy = true;
u.fails = 0;
}
Ok(Err(e)) => {
debug!("Health check failed for {:?}: {}", u.config, e);
// Don't mark unhealthy immediately in background check
u.fails += 1;
debug!(dc = dc_zero_idx + 1, fails = u.fails,
"Health check failed: {}", e);
if u.fails > 3 {
u.healthy = false;
warn!("Upstream unhealthy (fails)");
}
}
Err(_) => {
debug!("Health check timeout for {:?}", u.config);
u.fails += 1;
debug!(dc = dc_zero_idx + 1, fails = u.fails,
"Health check timeout");
if u.fails > 3 {
u.healthy = false;
warn!("Upstream unhealthy (timeout)");
}
}
}
u.last_check = std::time::Instant::now();