Files
telemt/src/proxy/handshake.rs
2026-02-15 12:30:40 +03:00

405 lines
13 KiB
Rust

//! MTProto Handshake
use std::net::SocketAddr;
use tokio::io::{AsyncRead, AsyncWrite, AsyncWriteExt};
use tracing::{debug, warn, trace, info};
use zeroize::Zeroize;
use crate::crypto::{sha256, AesCtr, SecureRandom};
use crate::protocol::constants::*;
use crate::protocol::tls;
use crate::stream::{FakeTlsReader, FakeTlsWriter, CryptoReader, CryptoWriter};
use crate::error::{ProxyError, HandshakeResult};
use crate::stats::ReplayChecker;
use crate::config::ProxyConfig;
/// Result of successful handshake
///
/// Key material (`dec_key`, `dec_iv`, `enc_key`, `enc_iv`) is
/// zeroized on drop.
#[derive(Debug, Clone)]
pub struct HandshakeSuccess {
/// Authenticated user name
pub user: String,
/// Target datacenter index
pub dc_idx: i16,
/// Protocol variant (abridged/intermediate/secure)
pub proto_tag: ProtoTag,
/// Decryption key and IV (for reading from client)
pub dec_key: [u8; 32],
pub dec_iv: u128,
/// Encryption key and IV (for writing to client)
pub enc_key: [u8; 32],
pub enc_iv: u128,
/// Client address
pub peer: SocketAddr,
/// Whether TLS was used
pub is_tls: bool,
}
impl Drop for HandshakeSuccess {
fn drop(&mut self) {
self.dec_key.zeroize();
self.dec_iv.zeroize();
self.enc_key.zeroize();
self.enc_iv.zeroize();
}
}
/// Handle fake TLS handshake
pub async fn handle_tls_handshake<R, W>(
handshake: &[u8],
reader: R,
mut writer: W,
peer: SocketAddr,
config: &ProxyConfig,
replay_checker: &ReplayChecker,
rng: &SecureRandom,
) -> HandshakeResult<(FakeTlsReader<R>, FakeTlsWriter<W>, String), R, W>
where
R: AsyncRead + Unpin,
W: AsyncWrite + Unpin,
{
debug!(peer = %peer, handshake_len = handshake.len(), "Processing TLS handshake");
if handshake.len() < tls::TLS_DIGEST_POS + tls::TLS_DIGEST_LEN + 1 {
debug!(peer = %peer, "TLS handshake too short");
return HandshakeResult::BadClient { reader, writer };
}
let digest = &handshake[tls::TLS_DIGEST_POS..tls::TLS_DIGEST_POS + tls::TLS_DIGEST_LEN];
let digest_half = &digest[..tls::TLS_DIGEST_HALF_LEN];
if replay_checker.check_and_add_tls_digest(digest_half) {
warn!(peer = %peer, "TLS replay attack detected (duplicate digest)");
return HandshakeResult::BadClient { reader, writer };
}
let secrets: Vec<(String, Vec<u8>)> = config.access.users.iter()
.filter_map(|(name, hex)| {
hex::decode(hex).ok().map(|bytes| (name.clone(), bytes))
})
.collect();
let validation = match tls::validate_tls_handshake(
handshake,
&secrets,
config.access.ignore_time_skew,
) {
Some(v) => v,
None => {
debug!(
peer = %peer,
ignore_time_skew = config.access.ignore_time_skew,
"TLS handshake validation failed - no matching user or time skew"
);
return HandshakeResult::BadClient { reader, writer };
}
};
let secret = match secrets.iter().find(|(name, _)| *name == validation.user) {
Some((_, s)) => s,
None => return HandshakeResult::BadClient { reader, writer },
};
let response = tls::build_server_hello(
secret,
&validation.digest,
&validation.session_id,
config.censorship.fake_cert_len,
rng,
);
debug!(peer = %peer, response_len = response.len(), "Sending TLS ServerHello");
if let Err(e) = writer.write_all(&response).await {
warn!(peer = %peer, error = %e, "Failed to write TLS ServerHello");
return HandshakeResult::Error(ProxyError::Io(e));
}
if let Err(e) = writer.flush().await {
warn!(peer = %peer, error = %e, "Failed to flush TLS ServerHello");
return HandshakeResult::Error(ProxyError::Io(e));
}
info!(
peer = %peer,
user = %validation.user,
"TLS handshake successful"
);
HandshakeResult::Success((
FakeTlsReader::new(reader),
FakeTlsWriter::new(writer),
validation.user,
))
}
/// Handle MTProto obfuscation handshake
pub async fn handle_mtproto_handshake<R, W>(
handshake: &[u8; HANDSHAKE_LEN],
reader: R,
writer: W,
peer: SocketAddr,
config: &ProxyConfig,
replay_checker: &ReplayChecker,
is_tls: bool,
) -> HandshakeResult<(CryptoReader<R>, CryptoWriter<W>, HandshakeSuccess), R, W>
where
R: AsyncRead + Unpin + Send,
W: AsyncWrite + Unpin + Send,
{
trace!(peer = %peer, handshake = ?hex::encode(handshake), "MTProto handshake bytes");
let dec_prekey_iv = &handshake[SKIP_LEN..SKIP_LEN + PREKEY_LEN + IV_LEN];
if replay_checker.check_and_add_handshake(dec_prekey_iv) {
warn!(peer = %peer, "MTProto replay attack detected");
return HandshakeResult::BadClient { reader, writer };
}
let enc_prekey_iv: Vec<u8> = dec_prekey_iv.iter().rev().copied().collect();
for (user, secret_hex) in &config.access.users {
let secret = match hex::decode(secret_hex) {
Ok(s) => s,
Err(_) => continue,
};
let dec_prekey = &dec_prekey_iv[..PREKEY_LEN];
let dec_iv_bytes = &dec_prekey_iv[PREKEY_LEN..];
let mut dec_key_input = Vec::with_capacity(PREKEY_LEN + secret.len());
dec_key_input.extend_from_slice(dec_prekey);
dec_key_input.extend_from_slice(&secret);
let dec_key = sha256(&dec_key_input);
let dec_iv = u128::from_be_bytes(dec_iv_bytes.try_into().unwrap());
let mut decryptor = AesCtr::new(&dec_key, dec_iv);
let decrypted = decryptor.decrypt(handshake);
let tag_bytes: [u8; 4] = decrypted[PROTO_TAG_POS..PROTO_TAG_POS + 4]
.try_into()
.unwrap();
let proto_tag = match ProtoTag::from_bytes(tag_bytes) {
Some(tag) => tag,
None => continue,
};
let mode_ok = match proto_tag {
ProtoTag::Secure => {
if is_tls { config.general.modes.tls } else { config.general.modes.secure }
}
ProtoTag::Intermediate | ProtoTag::Abridged => config.general.modes.classic,
};
if !mode_ok {
debug!(peer = %peer, user = %user, proto = ?proto_tag, "Mode not enabled");
continue;
}
let dc_idx = i16::from_le_bytes(
decrypted[DC_IDX_POS..DC_IDX_POS + 2].try_into().unwrap()
);
let enc_prekey = &enc_prekey_iv[..PREKEY_LEN];
let enc_iv_bytes = &enc_prekey_iv[PREKEY_LEN..];
let mut enc_key_input = Vec::with_capacity(PREKEY_LEN + secret.len());
enc_key_input.extend_from_slice(enc_prekey);
enc_key_input.extend_from_slice(&secret);
let enc_key = sha256(&enc_key_input);
let enc_iv = u128::from_be_bytes(enc_iv_bytes.try_into().unwrap());
let encryptor = AesCtr::new(&enc_key, enc_iv);
let success = HandshakeSuccess {
user: user.clone(),
dc_idx,
proto_tag,
dec_key,
dec_iv,
enc_key,
enc_iv,
peer,
is_tls,
};
info!(
peer = %peer,
user = %user,
dc = dc_idx,
proto = ?proto_tag,
tls = is_tls,
"MTProto handshake successful"
);
return HandshakeResult::Success((
CryptoReader::new(reader, decryptor),
CryptoWriter::new(writer, encryptor),
success,
));
}
debug!(peer = %peer, "MTProto handshake: no matching user found");
HandshakeResult::BadClient { reader, writer }
}
/// Generate nonce for Telegram connection
pub fn generate_tg_nonce(
proto_tag: ProtoTag,
dc_idx: i16,
_client_dec_key: &[u8; 32],
_client_dec_iv: u128,
client_enc_key: &[u8; 32],
client_enc_iv: u128,
rng: &SecureRandom,
fast_mode: bool,
) -> ([u8; HANDSHAKE_LEN], [u8; 32], u128, [u8; 32], u128) {
loop {
let bytes = rng.bytes(HANDSHAKE_LEN);
let mut nonce: [u8; HANDSHAKE_LEN] = bytes.try_into().unwrap();
if RESERVED_NONCE_FIRST_BYTES.contains(&nonce[0]) { continue; }
let first_four: [u8; 4] = nonce[..4].try_into().unwrap();
if RESERVED_NONCE_BEGINNINGS.contains(&first_four) { continue; }
let continue_four: [u8; 4] = nonce[4..8].try_into().unwrap();
if RESERVED_NONCE_CONTINUES.contains(&continue_four) { continue; }
nonce[PROTO_TAG_POS..PROTO_TAG_POS + 4].copy_from_slice(&proto_tag.to_bytes());
// CRITICAL: write dc_idx so upstream DC knows where to route
nonce[DC_IDX_POS..DC_IDX_POS + 2].copy_from_slice(&dc_idx.to_le_bytes());
if fast_mode {
let mut key_iv = Vec::with_capacity(KEY_LEN + IV_LEN);
key_iv.extend_from_slice(client_enc_key);
key_iv.extend_from_slice(&client_enc_iv.to_be_bytes());
key_iv.reverse(); // Python/C behavior: reversed enc_key+enc_iv in nonce
nonce[SKIP_LEN..SKIP_LEN + KEY_LEN + IV_LEN].copy_from_slice(&key_iv);
}
let enc_key_iv = &nonce[SKIP_LEN..SKIP_LEN + KEY_LEN + IV_LEN];
let dec_key_iv: Vec<u8> = enc_key_iv.iter().rev().copied().collect();
let tg_enc_key: [u8; 32] = enc_key_iv[..KEY_LEN].try_into().unwrap();
let tg_enc_iv = u128::from_be_bytes(enc_key_iv[KEY_LEN..].try_into().unwrap());
let tg_dec_key: [u8; 32] = dec_key_iv[..KEY_LEN].try_into().unwrap();
let tg_dec_iv = u128::from_be_bytes(dec_key_iv[KEY_LEN..].try_into().unwrap());
return (nonce, tg_enc_key, tg_enc_iv, tg_dec_key, tg_dec_iv);
}
}
/// Encrypt nonce for sending to Telegram and return cipher objects with correct counter state
pub fn encrypt_tg_nonce_with_ciphers(nonce: &[u8; HANDSHAKE_LEN]) -> (Vec<u8>, AesCtr, AesCtr) {
let enc_key_iv = &nonce[SKIP_LEN..SKIP_LEN + KEY_LEN + IV_LEN];
let dec_key_iv: Vec<u8> = enc_key_iv.iter().rev().copied().collect();
let enc_key: [u8; 32] = enc_key_iv[..KEY_LEN].try_into().unwrap();
let enc_iv = u128::from_be_bytes(enc_key_iv[KEY_LEN..].try_into().unwrap());
let dec_key: [u8; 32] = dec_key_iv[..KEY_LEN].try_into().unwrap();
let dec_iv = u128::from_be_bytes(dec_key_iv[KEY_LEN..].try_into().unwrap());
let mut encryptor = AesCtr::new(&enc_key, enc_iv);
let encrypted_full = encryptor.encrypt(nonce); // counter: 0 → 4
let mut result = nonce[..PROTO_TAG_POS].to_vec();
result.extend_from_slice(&encrypted_full[PROTO_TAG_POS..]);
let decryptor = AesCtr::new(&dec_key, dec_iv);
(result, encryptor, decryptor)
}
/// Encrypt nonce for sending to Telegram (legacy function for compatibility)
pub fn encrypt_tg_nonce(nonce: &[u8; HANDSHAKE_LEN]) -> Vec<u8> {
let (encrypted, _, _) = encrypt_tg_nonce_with_ciphers(nonce);
encrypted
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_generate_tg_nonce() {
let client_dec_key = [0x42u8; 32];
let client_dec_iv = 12345u128;
let client_enc_key = [0x24u8; 32];
let client_enc_iv = 54321u128;
let rng = SecureRandom::new();
let (nonce, _tg_enc_key, _tg_enc_iv, _tg_dec_key, _tg_dec_iv) =
generate_tg_nonce(
ProtoTag::Secure,
2,
&client_dec_key,
client_dec_iv,
&client_enc_key,
client_enc_iv,
&rng,
false,
);
assert_eq!(nonce.len(), HANDSHAKE_LEN);
let tag_bytes: [u8; 4] = nonce[PROTO_TAG_POS..PROTO_TAG_POS + 4].try_into().unwrap();
assert_eq!(ProtoTag::from_bytes(tag_bytes), Some(ProtoTag::Secure));
}
#[test]
fn test_encrypt_tg_nonce() {
let client_dec_key = [0x42u8; 32];
let client_dec_iv = 12345u128;
let client_enc_key = [0x24u8; 32];
let client_enc_iv = 54321u128;
let rng = SecureRandom::new();
let (nonce, _, _, _, _) =
generate_tg_nonce(
ProtoTag::Secure,
2,
&client_dec_key,
client_dec_iv,
&client_enc_key,
client_enc_iv,
&rng,
false,
);
let encrypted = encrypt_tg_nonce(&nonce);
assert_eq!(encrypted.len(), HANDSHAKE_LEN);
assert_eq!(&encrypted[..PROTO_TAG_POS], &nonce[..PROTO_TAG_POS]);
assert_ne!(&encrypted[PROTO_TAG_POS..], &nonce[PROTO_TAG_POS..]);
}
#[test]
fn test_handshake_success_zeroize_on_drop() {
let success = HandshakeSuccess {
user: "test".to_string(),
dc_idx: 2,
proto_tag: ProtoTag::Secure,
dec_key: [0xAA; 32],
dec_iv: 0xBBBBBBBB,
enc_key: [0xCC; 32],
enc_iv: 0xDDDDDDDD,
peer: "127.0.0.1:1234".parse().unwrap(),
is_tls: true,
};
assert_eq!(success.dec_key, [0xAA; 32]);
assert_eq!(success.enc_key, [0xCC; 32]);
drop(success);
// Drop impl zeroizes key material without panic
}
}